机器看到图像或视频就能像人类一样进行精准地表述,这看似不可能,但已在深兰科学院诞生的“智慧交通协管员”,已把它变为了现实。
这段视频的场景就是在城市繁忙的十字路口,尤其上下班高峰,行人违章现象非常多,即使有交警在路口执勤也很难做到面面俱到,此时“智慧交通协管员”将大大发挥作用。
利用自主研发的图像语义识别算法,“智慧交通协管员”可以实时识别行人和非机动车违章行为,可识别的行为包括:
1. 行人闯红灯; 2. 非机动车闯红灯; 3. 非机动车在逆行; 4. 非机动车在斑马线骑行; 5. 非机动车在人行道骑行;
还可精确描述违章者特征,进行语音播报提醒,识别率可达80%以上。同时,支持个性化语音定制,可以利用现有的视频摄像头资源进行人脸识别违章抓拍,方便处罚,还可辅助对接车路协同系统。
其中涉及到的技术比较多,概括起来就是视觉理解、认知推理、自然语言生成和语音合成。接下来,我们会对其中的关键技术视觉理解和认知推理进行展开。
视觉理解+认知推理
一、认知智能概述
人工智能的发展可以粗略划分为三个阶段:计算智能、感知智能和认知智能。
计算智能通俗来说就是计算机能存储、记忆会运算,这方面,计算机的智能水平早已经远远超过人类。
感知智能就是计算机具备类似于人类的视觉和听觉等方面的能力,比如,听到了什么,对应语音识别;看到了什么,对应图像的分类检测和语义分割。其中人脸识别就是包含感知智能技术的一种人工智能应用,近年来,随着深度学习技术在视觉感知领域的蓬勃发展,目前机器感知智能的性能已经可与人类媲美,甚至在许多场景下已经超过人类。
认知智能强调知识、推理等技能,要求机器能理解、会思考,目前机器远不及人类。从计算智能到感知智能,标志着人工智能走向成熟;从感知智能到认知智能,是人工智能质的飞跃。认知智能,与人的语言、知识、逻辑相关,是人工智能的更高阶段,涉及到语义理解、知识表示、小样本学习甚至零样本学习、联想推理和自主学习等等。相比于计算智能和感知智能,认知智能是更复杂和更困难的任务,也是未来数十年最重要的任务。
二、视觉理解与推理
Image captioning的发展历程
1996-2000年 符号规则方法
追溯到1996年,Gerber发表了一篇知识表示的论文,限定于交通场景,在图像序列中用知识表示来进行自然语言描述的问题。2010年时,朱松纯(S.-C.Zhu)教授团队首次提出与或图(And-Or Graph)的模型。进一步与 D. Mumford 合作进行了框架的完善,融入随机上下文相关语法(Stochastic Context Sensitive Grammar),能对复杂物体的多层次构造特性(Hierarchical Compositionality)建模,完全表示图像语法(Image Grammar)。
与或图表示突破了传统单一模板(Template)的表示方法,对每类物体用多个图结构表示,该结构可以通过语法(Grammar)、产生规则(Production Rule)进行动态调制,从而可以用相对小的视觉字典(Visual Vocabulary),表达大量类间结构变化很大的物体的图像表现形式(Configuration)。
这些方法实际上都基于逻辑体系和规则的系统,对图像的内容设计很多规则,继而产生自然语言描述。由于强依赖于手工定制,人工特征工程的工作量就非常大,这也是当时亟待改善的问题。
2011-2013年 无明显进展
2014年至今 深度学习方法等
2014年,谷歌的Oriol Vinyals 等人公开论文《Show and Tell: A Neural Image Caption Generator》,并发表于2015年CVPR,开了深度学习在Image captioning中使用的先河。该方法来源于以前的机器翻译。
输入图形后,深度卷积神经网络对图形特征进行提取,通过固定长度矢量形成输入(Input)进入循环神经网络(RNN),经过一系列训练后,输出一段描述性的自然语言文字。按照时间序列的顺序,逐个词进行输出,条件依附于之前的词。
使用如下公式最大化给定图像的正确描述概率:
Encoding-Decoding 灵感来源于翻译模型。
基于更复杂的视觉特征提取模型的Image Captioning。其中利用人的常识构建了一个知识库(ConceptNet),然后把它加入Encoding-Decoding模型里,赋予模型一定程度的常识能力。我们一直希望机器能有所谓的认知智能,实际上就是希望机器能够像人一样具有常识。
123下一页>(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )