过去十年内,随着我们在人工智能领域取得长足进步,我们能够为嵌入式系统增加一些先进功能,例如人脸识别。虽然人脸识别能够带来诸多好处,但人们有时仍然认为它的使用存在问题,甚至充满了争议。事实究竟如何?在本文中,我们将澄清一些对人脸识别的误解。
1) 人脸识别的成本非常昂贵
人们会觉得要让计算机能够识别人脸,解决方案必须采用高端硬件。毕竟,自21世纪前十年中期以来,深度学习算法在图像分类方面的突破都利用了图形处理单元(GPU)的强大处理能力,这些单元通常在紧耦合集群中使用。但对于嵌入式系统(例如家庭安保和门禁控制产品)的人脸识别应用开发人员而言,并不需要如此复杂的机器学习流程。设计高效率的算法,侧重于检测人脸、将人脸与已注册的图像进行匹配,所需的处理能力将远低于研究级别的算力。
2) 人脸识别非常困难
机器学习的一大关键难点是将设计流程与应用相匹配,以便能够在训练时产生有用的结果。但在人脸学习等应用中,不需要从头开始构建这些结构。我们可以使用基于经过验证的机器学习过程构建的平台,它们不仅能快速提供高性能,而且提供一定程度的定制能力,满足不同目标市场的需要。
3) 人脸识别需要高性能处理
很多人看到,在云计算环境中,我们将高性能硬件用于机器学习,于是他们想当然地假定机器学习都是重量级进程。但是,这些系统需要能够适应很多不同应用,而且它们可以充分利用支持所有深度学习架构的开源工具。因而,即便对于推理应用,当使用网络来分析实际数据时,模型具有高度的数据和计算冗余。 嵌入式解决方案可以显著减少这些开销,因而能够在32位MCU上运行复杂的人脸识别算法。
4) 人脸识别不太安全
人脸识别在嵌入式系统中的一大重要应用是门禁控制,如果有人手持自拍照靠近摄像头企图蒙混过关,需要确保门锁不会被打开,也无法越过报警系统。正因为如此,采用机器学习技术的集成式视觉平台非常重要。这些技术能够对图像执行检查,确保将可用数据馈送到机器学习算法。灵活确保管道可以处理可见光数据以及更多内容。在这种情况下,使用红外传感器或图像传感器可以帮助系统能够辨别真伪。
5) 人脸识别侵犯隐私
公众熟悉的众多应用需要将原始数据上传至云服务器,然后在云服务器上处理数据。这是很多消费者担忧的问题,他们不希望自己在住宅及周边区域的活动在互联网上传播,甚至可能在服务器遭受恶意攻击后被披露。有些平台可在本地执行所有图像处理和人脸识别功能,例如恩智浦基于MCU的EdgeReady解决方案。数据自始至终不会离开平台,从而确保最终产品可以最大程度地保护用户隐私。
12下一页>(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )