2023年大炼模型兴起,全球范围内都出现了算力供不应求、一卡难求的情况。各地纷纷兴建数据中心、智算中心,来解决国产大模型的算力短缺问题。
今年算力市场又倒向了另一个方向,算力开始过剩和大量闲置了。
主要体现在,高端显卡囤积居奇的生意不好做了,“GPU倒爷”的朋友圈已经从“欲购从速,过时不候”,变成了“A100/H100滞销,帮帮我们”。而算力租赁市场,理想情况下的上架率应该是80%,但很多集群只能达到30%甚至更低,投入大量资金建设的算力闲置,租不出去。
于是一种声音开始甚嚣尘上,认为算力荒已经缓解了,供过于求,应该放慢自主化智算的建设。还有人说,智算中心建的太多了,大模型都用不完了。
发展自主化智算,到底还有没有必要?
还记得2023年算力荒焦灼、智算建设突飞猛进的时候,倪光南院士曾提到过:各地盲目建设各种低水平智算中心,让人唏嘘不已,一定要警惕“技术房地产”和“数字烂尾楼”。所谓“技术房地产”,就是算力资源卖不出去,只能变成一堆放着服务器的砖头水泥房子,闲置在那里。
短短一年多时间,从算力短缺到算力过剩,究竟是怎么发生的?目前来看,闲置算力主要集中在三种情况:
1.用不起。英伟达的高端显卡GPU是AI训练的首选,2023年一度一卡难求。以N卡为主的智算资源闲置,一是因为巨头们此前已经大量囤积采购了GPU,需求减少;二是炒作之后价格昂贵,即使价格回落,中小企业还是用不起。在很多讨论“算力过剩”的评论区,我们总能看到“降价试试”的留言,说明高端AI算力的需求仍在,只是昂贵的N卡被价格劝退了。
2.不好用。国产卡组成的算力集群,也存在上架率不高、资源闲置的问题,主要是不好用。因为国产卡的集中度不高,一个千卡或万卡集群,往往是由各类国产算力卡组成的,异构算力之间的协同调度,涉及大量工程化细节,没有做好就无法开箱即用。勉强用了,又时不时出现业务中断、算效不高、恢复训练慢等各种问题,导致客户流失。这类被迫闲置的国产算力,正是没有考虑配套,盲目建设的低水平智算中心。
3.用不上。“百模大战”之后,企业不再大炼模型,预训练的算力需求也就大幅下降,算力市场开始转向以推理算力为主。但推理市场的爆发,需要一个过程,目前AI的行业渗透率还比较低,总体不到10%,很多企业对AI的投入以尝试为主,还没有大规模爆发。所以,训练用算力开始出现闲置,而推理用算力还未大规模崛起,因此短缺问题尚未完全显现。
低水平算力的闲置与过剩,再一次警醒我们:一个繁荣健康的算力市场,关键不是建出来,而是用起来。
这种情况下,仍然大力发展自主化智算,还有必要吗?
我们认为,这个问题的答案不该有犹豫,要旗帜鲜明地,鼓励自主化智算基础设施的继续建设、加速建设。
首先,从长期看,国内智算属于后发,基础仍然薄弱。
中国智算的进步速度是很快的,但也要客观看到,美国这样的IT先行者,从20世纪90年代以来就在IT建设上大力投入。根据彼得森国际经济研究所的消息,在2024年美国在电子制造业建设方面(主要是芯片)的投资,就超过了1996年至2020年(24年的时间跨度)的总投资。而产业界,xAI、Meta、OpenAI等海外AI巨头,都在积极布局十万卡、五十万卡规模的智算集群。
所以,国内自主化智算近年来的发展虽然迅猛,也是在积极补课,打牢基础。这时候如果停止,不仅会前功尽弃,还会让中美在AI基础设施上的差距进一步拉大。
从近期看,自主化AI算力需求仍然没有得到充分满足,算力荒仍在。
一方面,海外AI算力进口受到限制,极不稳定。目前,国内AI训练芯片市场英伟达占据了80%~80%的市场份额,要避免威胁供应链安全,这种情况必须尽快改变。上海的“算力浦江”智算行动实施方案(2024—2025年)要在2025年,实现新建智算中心的国产算力芯片使用占比超过50%;《北京市算力基础设施建设实施方案(2024—2027年)》则提出,2027年要具备100%自主可控智算中心建设能力。
三年左右,从不到20%发展到100%。所以,如今的自主化智算不是太多了,而是还不够。
与此同时,算力需求仍在增长。大模型的规模法则仍在继续,以Sora为代表的视频生成模型对算力的需求量是LLM大模型的数倍,已经出现了“一栋楼放不下一个模型”“一个模型需要多个集群”的情况,超万卡智算中心是必不可少的基础设施,目前国内的十万卡集群还远远不足。
此外,大炼模型的阶段虽然结束了,但基础模型的市场集中度提高和能力提高,又会释放AI应用需求,促进AI的行业渗透率、普及率,导致AI推理算力的需求爆发,急需要更多高质量算力来满足。目前部分国产AI算力集群的利用率极高,西安昇腾智能科技有限公司的人工智算中心算力使用率就高达98.5%;曙光在长沙的5A级智算中心,也吸引上百家企业入驻,实现万余个商业应用接入。因此,随着产业智能化升级的继续推进,国产AI算力荒不是已经解决,而是从现在开始重视和应对。
互联网产业的核心,当然不是宽带和机房,但没有“宽带高速公路”,就没有美国互联网经济的爆发;移动互联网的核心,也不是基站,但没有广泛覆盖的4G基站,就没有智能手机和移动应用软件的兴起。AI大模型也是一样, AI作为一种依附在基础设施之上的软件技术,核心不是智算,但没有自主化智算,国内AI绝不可能独善其身、独自蓬勃发展。
因此,自主化智算并不存在过剩,更不该就此放慢发展。
综上,“国内AI算力过剩”,是个假问题,“如何合理地推进自主化智算的建设”,才是真问题。
解决这个真问题,国内智算产业已经来到了承上启下的新阶段。不仅要追求把智算中心“建起来”,还要能运营好、用起来。
因此,智算厂商的竞争,也从售卖硬件资源与智算解决方案,转变为多维度、综合性、长期服务的竞争。比如华为昇腾AI全栈、中科曙光的“立体计算”、宁畅的“全局智算”、联想的“万全生态”,新华三的“1+N”智算等,以更全面的能力,支撑自主化智算的建设运营。
追求全面,并不意味着胡子眉毛一把抓,目前来看,智算厂商们主要集中解决自主化AI算力的几个痛点问题:
1.异构问题。目前,国产AI芯片还无法规模化出货,市场集中度较低,因此都是以混合算力的形式,来加入智算集群。多元异构算力的协同调度、管理、算效、业务可靠性等,面临很多技术挑战。如果一个企业或开发者,要针对ABCD不同厂商的卡进行适配开发,是不可能的。所以,就需要智算厂商提供相应的系统平台,屏蔽底层异构硬件的复杂性,让大家用好国产算卡。比如联想的万全异构智算平台,实现异构化AI算力的管理与调配;新华三面向异构智算的智能管理平台,一站式应对多样化的AI应用场景。
2.算效问题。解决“低质量算力过剩,自主化高质量算力不足”的结构性问题,需要进一步提高国产AI的性能。面对工艺制程的限制,可以通过软硬件系统的无缝配合,从而实现国产算卡性能的充分释放。以昇腾为例,就与昇思紧密结合,为各类智算场景提供高性能的自主化AI算力,深圳鹏城实验室的“鹏城云脑Ⅱ”就依托昇腾实现了中国首个自主可控的E级智能算力平台,可以提供不低于1000Pops的整机AI计算能力。
3.运营问题。如今,一些地方在智算中心建设之前,开始提出上架率、收益率等要求,需要保证项目投运后有一定的使用率。同时,也会要求建设方提供设计、使用、运营等一体化服务,避免智算中心因无人运营而成为“数字烂尾楼”。以用促建、以服促用,已经是自主化智算发展的必然潮流。比如新华三与杭州市合作,打造“图灵小镇”,培育AIGC产业和数字人才;中科曙光“立体计算”主张“算力建设、应用赋能、生态共生”三位一体,推动多元算力向新质生产力转化,目前已经在5A级智算中心落地实践。
回顾这一年多来,国内智算的发展突飞猛进,取得了举世瞩目的成绩,我们不必再为算力荒而忧心忡忡。但人无远虑必有近忧,AI算力的自主化之路不能就此戛然而止,而要一鼓作气,再加把劲,把已经取得的成果夯实,为接下来的智能浪潮做好准备。
避免低质量算力过剩,与加速自主化智算发展,这两件事可以并行不悖,也应该理性分开看待。
免责声明:此文内容为第三方自媒体作者发布的观察或评论性文章,所有文字和图片版权归作者所有,且仅代表作者个人观点,与极客网无关。文章仅供读者参考,并请自行核实相关内容。投诉邮箱:editor@fromgeek.com。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。