在日常生活中,我们经常会扫描纸张把它们转换成图像,但这些图像往往存在阴影,我们有各种各样的工具可以在线增强这些图像,使它们的亮度更亮,并消除这些图像中的阴影。那有没有方法可以手动去除阴影呢?比如我们可以将任何图像作为灰度图像加载到我们的代码中,并在几秒钟内获得输出,而无需任何应用程序的帮助。这是可以通过使用基本的Numpy操作和一些openCV函数来实现。我们使用了下面的图片作为例子,它是用手机拍的。
很明显,它有一个阴影需要删除。将必要的软件包导入你的环境。为了易于显示图像,我们使用Jupyter Notebook。import cv2import numpy as npimport matplotlib.pyplot as plt
删除阴影时,有两件事要注意。
(1)由于图像是灰度图像,如果图像背景较浅且对象较暗,则必须先执行最大值滤波,然后再执行最小值滤波;(2)如果图像背景较暗且物体较亮,我们可以先执行最小值滤波,然后再进行最大值滤波。那么,最大值滤波和最小值滤波到底是什么呢?最大值滤波:假设我们有一个特定大小的图像 I ,我们编写的算法应逐个遍历 I 的像素,并且对于每个像素(x,y)都必须找到该像素周围的邻域(大小为N x N的窗口)中的最大灰度值,并将该最大灰度值写入A中相应的像素位置(x,y),所得图像 A 称为输入图像 I 的最大值滤波图像。让我们在代码中实现这个过程。max_filtering()函数接受输入图像和窗口大小N。它最初在输入数组周围创建一个“wall”(带有-1的填充),当我们遍历边缘像素时会使用这个数据。然后,我们创建一个“ temp”变量,将计算出的最大值复制到该变量中。然后,我们遍历数组,并围绕当前像素大小N x N创建一个窗口。然后,我们使用“ amax()”函数在该窗口中计算最大值,并将该值写入temp数组。我们将该临时数组复制到主数组A中,并将其作为输出返回。A是输入I的最大值滤波图像。def max_filtering(N, I_temp): wall = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1) wall[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)] = I_temp.copy() temp = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1) for y in range(0,wall.shape[0]): for x in range(0,wall.shape[1]): if wall[y,x]!=-1: window = wall[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1] num = np.amax(window) temp[y,x] = num A = temp[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)].copy() return A
最小值滤波:此算法与最大值滤波完全相同,区别在于我们不再去找邻近的最大灰度值,而是找该像素周围N x N邻近的最小值,并将该最小灰度值写入B中的(x,y),所得的图像 B 称为图像 I 的经过最小值滤波的图像。让我们对该过程进行编码。def min_filtering(N, A): wall_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300) wall_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)] = A.copy() temp_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300) for y in range(0,wall_min.shape[0]): for x in range(0,wall_min.shape[1]): if wall_min[y,x]!=300: window_min = wall_min[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1] num_min = np.amin(window_min) temp_min[y,x] = num_min B = temp_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)].copy() return B
因此,如果图像的背景较浅,我们要先执行最大值滤波,这会为我们提供增强的背景,并将该最大值滤波后的图像传递给最小值滤波函数,该函数将负责实际的内容增强。执行最小-最大值滤波后,我们获得的值不在0-255的范围内,所以我们必须归一化使用背景减法获得的最终阵列,该方法是用原始图像减去最小最大值滤波后的图像,以获得去除了阴影的最终图像。#B is the filtered image and I is the original imagedef background_subtraction(I, B): O = I - B norm_img = cv2.normalize(O, None, 0,255, norm_type=cv2.NORM_MINMAX) return norm_img
变量N(用于过滤的窗口大小)将根据图像中粒子或内容的大小进行更改。对于测试图像,选择大小N = 20。增强后的最终输出图像如下所示:
输出图像是原始图像增强后的结果,所实现的代码是在openCV中手动实现一些库函数以增强图像的拙劣尝试,带有图像的整个notebook可以在下面的Github链接中找到。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )