轻舟智航展示自动驾驶Drive-through

乘坐自动驾驶车在麦当劳“Drive-through”(汽车穿梭窗口)点餐是一种怎样的体验?——既不用下车也不用自行驾驶,只需在车内点单付费,即可享受一份丰盛晚餐。这种似乎只有在未来才会出现的美好生活景象,已经成为现实。

3月21日,来自硅谷的自动驾驶初创企业轻舟智航,展示了其自动驾驶汽车在麦当劳“Drive-through”的画面,轻舟智航的一位工作人员和硅谷风险投资BoomingStar Ventures管理合伙人Alex Ren共同体验了这项服务。

本次为一次性完成整趟行程,此前轻舟智航也是一次性就通过了该地测试。对此,公司CEO于骞将其归功于正式上路前的大量仿真测试。

无人车Drive-through初体验

从汽车在公司门口启动到抵达Drive-through点餐-付款-取餐,再到经过美国大卖场回到公司门口,短短15分钟的旅程对Alex Ren来说是一项全新体验。他感慨:“我还是第一次坐在后排点餐,这个体验还蛮不错。”

(试乘部分路线图)

视频中可见,这辆由林肯MKZ改装而成的自动驾驶车,在去Drive-through的过程中,经历了停车场、无保护右转、十字路口、麦当劳餐厅等场景,最高速度达到64km/h。其中,车辆行驶的区域车道较窄,比较考验自动驾驶车的定位和控制能力,尤其是在麦当劳Drive-through点餐取餐过程中,能否精准停在相应窗口前,对自动驾驶车来说是另一大挑战。返程过程中,自动驾驶车在十字路口即将执行右转动作时,左侧突然出现两名行人,车辆暂停动作等待行人过去后才继续右转。

(轻舟智航自动驾驶车行驶画面)

这段视频拍摄于5天前(16日)的加州。受美国疫情影响,在拍摄前的第三个小时(当日下午4点),轻舟智航收到了来自政府的正式强制性命令——所有居民必须在家隔离,除非采购食物,就医或者其他紧急情况不得离开住所。这条禁令打乱了轻舟智航原定于21日直播自动驾驶车Drive-through的计划,于骞第一时间联系了Alex Ren作为第三方见证者,在当天晚上7点多紧急录制了路测视频。由于时间紧张,该视频是“一镜到底”录制完成。

与开放道路可以重复路测不同,本次演示的场景麦当劳是一个正常营业的区域,平时不能在这里进行路测。“通过大量仿真测试,可以做到第一次上路就安全可靠。”于骞解释道。

在自动驾驶技术迭代过程中,仿真测试是重要一环。目前,业界最有名的仿真系统莫过于Waymo的Carcraft,如今其仿真路测里程已超过100亿英里。从加州车管局(DMV)公布的2018年和2019年两份自动驾驶接管报告中来看,Waymo 2019年因感知而导致的接管次数明显变多,“这并不意味着Waymo感知能力下降了,感知所占比例的上升,更多是规划决策造成接管所占比例下降的缘故。”于骞说道,“这离不开Waymo大规模的仿真测试应用。”

(DMV:2018年和2019年Waymo接管类型对比)

在创立轻舟智航之前,于骞曾是Waymo感知关键模块的机器学习算法研发负责人,但他认为,感知是比较确定性的问题,测试和评价方法都比较明确,自动驾驶最大的挑战是规划决策。轻舟智航便为解决该问题而生,于骞形象地描述道:“相比原本的‘造梯子’,我们更希望‘造火箭’。”

而‘造火箭’的有效途径便是合理利用仿真技术,帮助规划决策进行更好的测试——毕竟不能每修改一次算法就部署到车上进行测试。

此外,仿真测试还能支撑无人驾驶技术所有关键模块进行快速迭代。在产品正式上路之前,从地图到定位,从感知到预测,再到最终的规划决策,所有模块的开发需要同步进行且都都要进行测试,仿真的作用由此发挥。

独特的仿真系统,被这家刚满一岁的年轻公司视为“杀手锏”。因而,公司刚刚成立之时,轻舟智航就将仿真测试平台作为关键核心能力,与其他模块一同建设起来,以保持高效开发。

“仿真是达到规模化无人驾驶技术的唯一路径。”轻舟智航联合创始人汪堃在分享中说道。

打造一款实用的仿真软件

一款优秀的仿真软件应该是什么样子的?

是要把真实道路场景完全“搬”到电脑上吗?汪堃对此表示否认。在他看来,这种基于游戏引擎开发的仿真软件,场景的确非常真实,但实用性却不高。

一般而言,游戏引擎的图像渲染可以做到特别真实,但过程中会消耗大量额外计算资源,不利于大规模应用,且渲染效果与真实物体状况存在一定差别,对感知能力的提升有限。此外,由于这属于一种Re-build软件(基于第三方软件开发),与自动驾驶软件的开发相互独立,因而难以保证各个模块确定性,这可能导致整个仿真软件存在不确定性,最终影响可用性。

不同于此,轻舟智航自主研发的仿真软件摒弃了复杂的渲染工作,界面简单,仅保留感知结果,包括3D Box和雷达点的叠加。与此同时,该软件还能做到与车载系统基本一致,能在仿真中复现路上出现过的问题,以此进行修复,保证再次上路时不出现同样问题。

在其展示的麦当劳Drive-through场景仿真界面中,轻舟智航用绿色框代表车辆,黄色框代表行人,白色框代表当时实际行驶轨迹。虽看起来并不“华丽”,却能真实反映当时情况,以求简单高效。

“目前自动驾驶技术已经解决了90%的问题,但由于包含边界化难题,剩下的10%可能要花费同样多甚至更多精力来解决。”于骞表示,“(解决问题)关键在于建立自动化生产工厂。”因而,轻舟智航在设计仿真系统时,考虑到大量工具链和仿真测试环境的建立,希望能在自动驾驶车实际上路前,提前暴露潜在问题。

据汪堃介绍,轻舟智航仿真系统的系统架构可分为5层,分别为自研Car OS、核心仿真器及评估器、仿真周边工具链和基础架构、大规模场景库构建、分布式系统仿真平台。

其中,最底层的Car OS能够借助底层的通讯系统来保证模块之间的高效通讯,向上一层的核心仿真器及评估器,能够从安全性、真值、法规、舒适度、状况等多个维度评估自动驾驶车,保证仿真系统的确定性,再上一层的仿真周边工具链和基础架构,则能高效利用全部数据,保证整个数据闭环的有效性。

在轻舟智航看来,有效数据、智能仿真系统以及决策规划框架是推动技术向前转动的“齿轮”。换句话说,仿真系统是二者之间的纽带——在收集大量数据后,轻舟智航能够借助仿真及相关工具链,形成数据测试闭环,支持算法的测试和迭代,不断修改决策规划框架,以求保证自动驾驶车的安全性和可用性。这种方式能够较大化利用有效数据,降低测试成本,提升开发效率。

目前,业界致力于实现L4级自动驾驶的公司几乎都拥有自己的仿真系统,但他们的业务重点多集中在算法研发层面。对于仿真平台的精心打造,使轻舟智航看起来多少有些与众不同。想用最少的人、最少的工具、做最难的事,就这家年轻的自动驾驶公司公司而言,目标远大,但未来仍充满挑战。

除了美国硅谷,轻舟智航还在中国北京、深圳、苏州等多个城市设有办公室,本次是其首次在国内公开亮相。公司表示,将在2020年完善大量的工具链以及仿真测试环境,以建好“自动化规模生产的工厂”,更多的落地场景则将择日进行公布。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2020-03-25
轻舟智航展示自动驾驶Drive-through
乘坐自动驾驶车在麦当劳“Drive-through”(汽车穿梭窗口)点餐是一种怎样的体验?——既不用下车也不用自行驾驶,只需在车内点单付费,即可享受一份丰盛晚餐。

长按扫码 阅读全文