对于AI而言,2019是场硬战

2000年以来国内学术浪潮的发展特点:2003年受LDA topic model影响,实验室热火朝天的在文章中建起Graphical model加入隐变量,2004年Hadoop出现,数据热成为各个领域各种问题的焦点,有甚者只要将传统算法在MapReduce框架改写一下,便可以发布新的热点文章,2010年Spark出来后,将Hadoop赶跑,之后深度学习的出现,又使topic model文章的热度降了下去……从疯狂到偃旗息鼓,也只不过是短短几年的时间。   

据荷兰爱思唯尔出版集团的报告显示,过去20年中,中国的研究员发表了大约13.4万篇关于人工智能的研究论文,美国发表的论文仅10.6万篇。所有的人们都知道,当前的实际运用水平,AI仍然有段路子要走,但在理论上,明显中国已经占据绝对的领先地位。   

疯狂的学术界背后,少不了疯狂的资本市场。据工信部中国信通院副所长张雪丽介绍,截止至2018年9月,全球共有人工智能企业5159家,中国以1122家(不含港澳台)位居第二;北京则以445家的总数,成为全球人工智能企业最多的城市。2018年上半年,人工智能领域的全球融资规模达到435亿美元,中国的规模达到317亿美元,占了全球的四分之三以上。又一场漂亮的胜利:中国仅靠全球1/5的企业获得了全球3/4的融资,投资者对中国AI领域充满期待。   

但据媒体的人工智能落地报告中指出,2017年中国AI创业公司累计获得超过500亿人民币融资,但其中商业落地前100强公司累计产生收入却不足100亿人民币。在整个产业链中,90%以上的AI企业依然处在亏损阶段,绝大多数企业年营业收入不足两亿。   

针对这种现象,阿里巴巴的前CEO卫哲说:目前人工智能的泡沫巨大无比,媒体吹捧,市场过热。市面上很多公司号称自己是“人工智能”公司,但有九成的人工智能公司都是“伪人工智能”。   

技术无法商业化,是人工智能公司被冠以“伪人工智能”的关键所在。以笔者在安防市场的观察,一部分原因是因为企业过度宣传实验室数据,让用户在实际体验中落差大,另一部分的原因是企业盲目追求模仿,缺乏真正的创新能力,其中以人脸识别技术最为显著,当产品技术趋向同质,价格战便会随时爆发。   

虽然目前安防市场足够大,也足够分散,碎片化的需求能让各家企业都能获得市场,但这距离一些CV企业之前的初衷或许已经存在着差别。不能否认的是,人工智能与深度学习在语音识别、图像识别、无人驾驶等领域都具备良好的发展前景,加上国家政策的引导,未来它们仍然会在业界继续红火下去,以工业界的普及要晚于学术界5-10年的常规推理下,相信未来十年内将是人工智能落地的争夺战。但投资者对于未来的预期以及人工智能的热情已经开始回到冷静期,这对于未来CV企业未来的发展而言,路并不会像之前那么好走。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2019-03-02
对于AI而言,2019是场硬战
2000年以来国内学术浪潮的发展特点:2003年受LDA topic model影响,实验室热火朝天的在文章中建起Graphical model加入隐变量,2004年Hadoop出现,数据热成为各个领

长按扫码 阅读全文