《论语》有句话,“治其器必求其用”。经世致用,是中国文化的传统之一。当前,全球进入了数字化、智能化的新纪元,算力作为数字经济时代的核心生产力,也带动算力基础设施的重要性上升到了新的高度,产业处于高速增长期。工信部的数据显示,目前,我国算力总规模超180EFLOPS,已经位居全球第二。
大量算力被制造出来,中国各行各业又存在着多元丰富的应用场景,那么问题来了:这些算力资源是否被充分使用了呢?
有数据显示,目前整体算力利用率不足30%,大量算力仍处于闲置状态,尤其智算水平还需要进一步提升。
在算力供需矛盾凸显的同时,其他产业的高质量发展又对算力提出了更高要求。以用促建、建以致用,推进算力高质量发展,才能更好地满足智能时代千行百业的算力需求,确保算力资源的充分利用。
2023年12月,由清华大学全球产业研究院主办的“算力高质量发展与应用高端论坛”上,各界人士围绕算力高质量发展议题展开深入研讨。浪潮信息首次从技术视角,提出了“高质量算力”的明确定义,总结了高算效、高能效、可持续、可获得、可评估五大特征,为算力高质量发展找到了路径。
理解了“高质量算力”的涵义,算力行业如何走向经世致用,答案也就愈发明晰了。
寻路:算力“致用”的核心矛盾
算力为什么要“致用”?《2022-2023全球计算力指数评估报告》显示,计算力指数平均每提高1点,国家的数字经济和GDP将分别增长3.6‰和1.7‰。让算力充分释放新质生产力的新动能,将惠及每一家企业和每一个人。
因此,更有必要弄清楚一个问题:算力基础设施的利用率不高,究竟是什么情况?
对此,浪潮元脑首席技术官张东提出了算力供需矛盾的核心问题——结构化失衡。
张东认为,导致算力整体利用率不高的原因,主要是供需错位。
一方面,算力需求总量仍在不断增长,AI专项算力、高性能算力等高端算力的缺口大。另一方面,在实际使用过程中,由于现有供给结构与用户实际的算力需求不平衡、不匹配,会出现供需错位的情况,导致大量算力闲置和浪费。
具体来说,不同水平算力的供给结构与实际需求出现错配,比如通用算力的利用率不高,低端算力供给过剩,而大模型、自动驾驶等AI任务需要的智算算力则供给不足。此外,供给端与需求端之间存在“断层”,由于配套服务、生态等不完善,导致企业想买但买不到,很多数据中心的算力资源用不起来。
在此次论坛上,清华大学全球产业研究院副院长李东红教授坦言:“未来一整年的问题,就是怎么避免低水平同质化的算力建设,赋能其他产业的高质量发展。
”致用必先明道。走高质量发展之路,成为中国算力行业解决供需矛盾、优化供给结构、平衡供需关系的必然选择。
接下来的问题是,如何推进算力高质量发展?
路标:算力行业给出首个答案
2023年10月,工业和信息化部等六部门联合印发了《算力基础设施高质量发展行动计划》,明确了高质量算力的发展方向。
到了落地执行层面,要进一步将宏观目标拆解成清晰可行的具体方法与路径。但是,由于参与到算力建设的产学研各方面力量众多,各领域对“高质量算力”这一新兴概念的理解差异大,导致概念纷杂、众说纷纭,迫切需要一个能够凝聚产业共识的明确定义。
浪潮信息在本次论坛上,从技术视角对“高质量算力”提出了明确定义:高质量算力采用先进的计算架构,具备高算效、高能效、可持续、可获得、可评估五大特征。
在张东看来,高质量算力一定是以应用为导向的。“高质量算力”的五大特征也聚焦实用,成为一个破解算力“致用”难题的“五边形战士”。具体来说:
第一个指标高算效,解决的是“算力利用率不高”问题。
以往衡量一个算力基础设施,更关注参数指标,有多少张芯片、多少台AI服务器、总规模达到多少Flops。而面向应用的高质量算力,在建设时就不能只看理论指标,还要关注应用场景下的实际性能和资源利用率。
在张东看来,高算效是算力供需失衡、算力利用率低等矛盾的破局之道。通过实测性能与资源利用率的双重提升,可以提高实际性能,避免算力堆砌及大量资源闲置。
第二个指标高能效,解决“算力能耗成本高”的问题。
算力中心是耗电大户,在双碳背景下,节能降碳成为算力行业的共同使命和硬性指标。过去几年,PUE为算力中心画下了一道“绿线”,但降低PUE,主要着眼于“风火水电”等“运营碳”的减少,在算力全生命周期中,还有一些“隐含碳”的环节,比如从服务器和芯片的设计环节进行优化和减碳。
高能效指标的提出,着眼于算力全生命周期的减碳,用每单位碳排能产生的算力来衡量数据中心的能源利用率,可以综合减少算力能耗成本。
第三个指标可持续,旨在消除算力供应链风险、技术迭代风险、生态封闭风险。
具体来说,要实现供给的可持续,通过完备完整的供应链,保证算力的持续供给;技术的可持续,要具有足够的兼容性,不断升级迭代;服务的可持续,高质量算力的生态开放,服务分层解耦,可以灵活替换,不用担心被某一家厂商绑定。
第四个指标可获得,从便捷性和成本两个维度,解决一些场景算力不易得到或算力价格贵的问题。
便捷性上,高质量算力应该具有普适性,满足各种应用场景复杂多样的算力需求;成本上,高质量算力要具备普惠性,让千行万业低成本地使用。
第五个指标可评估,则解决了“没有度量就不好改进”的问题。
如果没有一个规范的多元的算力评估体系,容易出现低水平同质化扎堆、技术创新方向和产业规划不匹配等问题,高质量发展是很难持续的。可评估的高质量算力,可以更好地辅助用户决策、推动技术创新、明确规划方向。
可以看到,“高质量算力”五大特征,直面算力致用难题,给出了针对性的答案。首个定义,可以视作算力高质量发展之路上一块清晰的路标。
迈步:浪潮信息的产业实践
我们常说行胜于言、质胜于华,不仅要看算力企业怎么说,更要看实际行动。目前看来,浪潮信息做到了。
此次论坛上,浪潮信息不仅首次定义了“高质量算力”,也提出了高质量算力的发展路径,实打实地推动“高质量算力”落地。
比如针对当前算效问题,浪潮信息提出了以系统设计为核心的技术路径,围绕算力的生产、聚合、调度、释放各个环节,进行全局优化,进一步提升算效。
以浪潮信息“源2.0”大模型的训练为例,在生产环节,整合高性能部件,打造多元异构的强大算力机组;聚合环节,消除网络与存储性能瓶颈,进行集群性能调优,构建高效的算力集群;调度环节,通过上层的调度软件高效调度,确保平台稳定运行;释放环节,提供丰富的框架、工具及算法优化,充分释放硬件性能。实现千卡集群平均计算峰值效率高达 54%,是业界平均效率的 1.8倍。
在算力能效问题上,浪潮信息也深入到算力全生命周期,从绿色采购、绿色设计、清洁生产、绿色包装和运输、绿色运营、回收处理等各个环节,实现全面的碳足迹管理,推进全产业链节能减排。
比如设计环节存在“隐含碳”,减碳难度比较高,为此,浪潮信息加大液冷技术创新,业界采用浪潮信息液冷技术的数据中心,相比传统风冷数据中心大幅节能减排,相当于减少1.54万吨标准煤消耗,4.1万吨二氧化碳排放,同时相当于种植231万棵树。
此外,针对可持续、可获得、可评估这三大指标,浪潮信息也积极与产业链上下游伙伴协作,为高质量算力铺平道路。比如,联合中国开放计算组织OCTC(开放计算标准工作委员会),推动先进技术标准的制定,通过一云多芯、分层解耦,消除单一技术路线依赖,实现算力可持续;推动算力基建化,联手合作伙伴推动南京、淮海、青田等智算中心的落地,让算力人人“用得上、用得起”,实现算力可获得;依托OCTC及中国电子工业标准化技术协会,构建一套面向多元算力的评估规范,全面评估高质量算力各项性能要素,让算力可评估。
浪潮信息正以实际行动让“五边形战士”迈出的每一步,都扎根在产业土壤中。
加速跑:进入高质量发展的新阶段
根据《数字中国建设整体布局规划》,到2025年,“数字中国建设要取得重要进展”。算力是新兴生产要素,算力基础设施相当于数字中国的底座,所以,在接下来不到两年的时间中,算力行业必须争分夺秒地补短板、快提速,完成从“总量扩张”向“结构优化”的转变。
首个定义与发展路径的提出,无疑为算力高质量发展按下了加速键。
在此基础上,产学研各方能够进一步消除认知分歧,凝聚产业共识,消除技术和生态壁垒,集中力量去打造千行百业真正需要的“五边形战士”。
把数字中国建在高质量算力的底座上,让算力与千行万业无缝接轨,这就是中国算力行业的“经世致用”之道。
免责声明:此文内容为第三方自媒体作者发布的观察或评论性文章,所有文字和图片版权归作者所有,且仅代表作者个人观点,与极客网无关。文章仅供读者参考,并请自行核实相关内容。投诉邮箱:editor@fromgeek.com。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。