拆解“算力偏科”难题,智算中心下一步向何处去?

十年前,英国《经济学人》曾用工业用电量为主的指标来评估中国GDP,而现在算力已经成为新的指标。似乎每个企业、每个城市都在努力增加算力。

一位读者不无困惑地留言,大家都说自己算力有多少FLOPS,能支撑这个大模型、那个大数据,是不是数字越大就算力越强呢?

还真不是。

衡量算力水平,除了运算次数,还要看算力精度,也就是能够支持的数据精度和运算复杂度有多高。

如果说运算次数(FLPOS)代表的是内力值,那么算力精度就像是“身法”,决定了能否用对内力、用好内力。武林对决,有人拿屠龙刀一通乱砍,令狐冲靠独孤九剑剑法一击必中,你觉得谁水平高?

不同计算任务,对算力需求不尽相同,需要恰当的“身法”,来发挥算力的价值。

具体来说,根据数据类型的不同,适配的算力精度也有所区别:

比如科学计算,天气预报、运算化学、分子模型、天体物理模拟等,数据精度要求高,需要双精度算力(64位,FP64),是由超级计算机提供的一种通用算力。

AI模型训练,自动驾驶、智慧城市、AIGC等业务,需要学习大量数据,训练出一个复杂的深度学习模型,而处理大规模浮点型数据,更适合用单精度算力(32位,FP32)、半精度算力(16位,FP16)。 近年来,预训练大模型爆发,涌现出了DALLE、ChatGPT、紫东太初等一波波大模型,参数动辄达到千亿万亿,大模型的高效训练需要用到大量的单精度算力。

训练好并部署的模型,实际应用时只需要根据输入的数据,推理出各种结论,比如人脸识别、车牌识别、语音识别等,这个AI推理的过程,处理的是整数型数据,更适用于整型算力(INT8)。

那么问题来了,一般来说,某一个区域内,既有高精尖科研、智慧城市、自动驾驶这类高性能计算,带来了通用算力的需求;又要有AI模型训练、AI应用推理等来支撑产业数转智改,对专用算力的需求也很高。

如果区域内算力配置不够多样化,少了某一种算力,相当于等用户上了战场对敌时,才发现无招可用或事倍功半,必然会限制当地数字化的发展。

因此,各地在进行智算中心建设时,从长远来看,就必须考虑算力的多样化、普适性。

但现实情况是,很多地方的智算中心,处于“先批快建”、各自为战的阶段,由于AI产业/科学计算/产业数字化等迅猛发展,迫切需要补足某种专用算力,应对算力焦渴,缺乏通用算力的统筹规划。

随着东数西算工程、数字中国等一系列措施的推进,进入“十四五”发展新时期,专用算力的通用化难题,就成为掣肘地方数字经济发展的当务之急。

前不久发布的《智能计算中心2.0时代展望报告》中也强调,当前个别地区选择的算力配置出现一定“偏科”现象,只能满足一部分细分场景的需求,不能兼顾多产业、多领域对融合算力的需求。需要推动通用算力、专用算力融合,驱动应用走向纵深。

对于高校、科研机构、企业、政府等各类算力用户来说,算力融合究竟能带来哪些利好?

破解“算力偏科”,算力融合价值几何?

一言以蔽之,算力融合,意味着用户可以对不同算力资源随取随用,无论是办公数字化需要的通用算力,还是AI应用需要的专用算力,抑或是气象预报、生物预测等需要的高性能算力,都可以融会贯通、博采众长,支撑自身业务的发展,成为一个算力“通才”。

从这个角度看,通用算力、专用算力的融合,会带来三重明显的价值:

一是数字经济的可持续。数字经济已经成为各个区域发展的主调,其中包含的算力应用场景是非常广泛的,根据应用场景来进行算力部署,更快地建立优势。比如某省会城市希望打造人工智能高地,同时高校牵头建立遥感产业集群,专用算力、通用算力相融合,能支撑更加丰富的应用场景,为当地数字经济的长期可持续发展提供算力保障。

二是综合成本的下降。算力基础设施的建设成本极高,在前期规划时做好多种算力的配置,能使基础设施的利用率提升,既保证算力充足,同时精益地满足各类任务所需,从而提高算力的综合效益,降低算力的使用成本,让区域内的算力更加普惠、更多用户受益。

三是多元供应的可靠性。算力融合意味着需要不同计算单元、多种架构并存、多种软硬件兼容,新型算力基础设施走向开放、多元、兼容,相当于“不把鸡蛋放在一个篮子里“,能够降低供应链的不确定风险,长期来看能够让算力更加安全可靠。

算力融合,相当于一个武林高手,无论华山剑法、少林功夫、武当太极,各种”身法“都能信手拈来,那么面对任一种计算任务的挑战,自然可以游刃有余。

纵横2.0阶段:数字江湖儿女需要怎样的算力底座

即将到来的数字经济浪潮中,每个人都要化身江湖儿女、弄潮时代,这时候,一个通用性的算力底座,就如同通晓全门派武功身法的“神助攻”,可以提供全精度多元算力,让用户更从容地应对业务变化和挑战。

国家工业信息安全发展研究中心在《报告》中提出,智算中心在2017-2021年高速扩张的1.0阶段,主要提供的是专用性的算力。从2022年开始进入2.0阶段,需要利用CPU与GPU等加速芯片的异构重合,来实现高精度通用算力和低精度专用算力的融合供应。

由此可见,智算中心的下一步重点,就是向通用算力底座发展。而建设这样一个通用算力底座,有“一横一纵“两个基本要求:

一横:多元算力需要多元架构,智算中心必须“横向”兼容。

智算中心1.0阶段,采用的是垂直一体的烟囱式的方案,针对性地满足高性能计算、人工智能、大数据计算等不同的应用负载,通用性和兼容性比较低。多样化的通用算力底座,要实现不同架构的芯片平台、不同场上的算法模型以及数据集的横向兼容,让用户可以根据业务场景和计算任务选择最适合的算力方案。

一纵:通用算力需要软硬协同,智算中心必须“纵向”耦合。

不同技术路线的芯片、算法、模型、应用等要素,需要产业链上下游的打通,解决软硬件兼容性的问题,芯片制造厂、中端厂商和软件开发商,通过软件优化、架构整合和软硬件协同,来提升计算的整体性能。

打破垂直一体模式,走向“横向”兼容“纵向”耦合,成为智算中心2.0时代的关键,从而支撑千行百业在数字时代纵横驰骋。

见招拆招:智算中心的未来挑战

智算中心1.0阶段快速扩张,统计数据显示,目前中国已经有超过30个城市在建设或提出建设智算中心。未来数字经济中80%的场景和算力资源要由智算中心进行承载。这是一个巨大的机遇,但机会越大,所应该承担的责任也就越大。

如前所说,智算中心在2.0阶段必须走向“横向”兼容“纵向”耦合的目标,饭要一口口吃,算力融合也要一步步走,把每一个环节做好,见招拆招。

具体来说,智算中心的算力融合,要从四个核心环节来做功,分别是:算力生产、算力聚合、算力调度、算力释放。

算力生产方面,要具备多样化算力的供给能力。为了实现不同架构芯片的多元化融合,智算中心的体系结构,已经从同构计算走向异构计算,国内外的科技企业如谷歌、英特尔、阿里、百度,都在进行异构计算的研发。《智能计算中心2.0时代展望报告》中,曙光5A级智算中心也凭借全算力精度覆盖、多样化算力供应,成为产业内示范样例

算力聚合方面,要推动通用算力和专用算力的融合。目前来看,业界各个厂家的智算中心建设理念是比较类似,都在强调融合发展。

算力调度方面,融合的算力如何灵活、精益地为各行各业所取用呢?这就需要对多样算力进行统一的调度和运营。宏观来看,在东数西算工程的推动下,全国算力一体化网络体系已经初步形成,为智算中心的算力调度建立了基础。微观来看,智算中心的建设者/参与者也开始建设算力运营平台,用精细化、智能化的手段来提高算力运营调度水平,比如曙光智算运营的全国一体化算力服务平台等。

算力释放方面,算力融合的本质目的是让千行百业用好算力、用对算力,所以多样化算力如何更灵活的释放到数字产业当中去,提供算力服务的应用,是智算中心在2.0阶段的重中之重。

从产到用、见招拆招,智算中心2.0将是真正意义上的公共算力基础设施,把澎湃的内力与适配的身法,交给千行百业。

一个全新的数字视界,已经向各行各业的侠士们广发英雄帖。广阔的产业机会,等待着大家去争取,去赢得自己在这个时代的勋章。

化多元化算力为己用,打开多元化的未来,智算中心2.0阶段,一定会有更多传奇的人和事。

免责声明:此文内容为第三方自媒体作者发布的观察或评论性文章,所有文字和图片版权归作者所有,且仅代表作者个人观点,与极客网无关。文章仅供读者参考,并请自行核实相关内容。投诉邮箱:editor@fromgeek.com。

极客网企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2023-01-17
拆解“算力偏科”难题,智算中心下一步向何处去?
十年前,英国《经济学人》曾用工业用电量为主的指标来评估中国GDP,而现在算力已经成为新的指标。似乎每个企业、每个城市都在努力增加算力...

长按扫码 阅读全文