过去两年是人工智能赛道需要极力反思的两年。一方面,巨亏之下,明星AI企业融资难度加大,云从、商汤等,要么上市一波三折,要么股价节节败退,资本市场不看好的声音此起彼伏。
另一方面,人工智能的商业化应用没有看到更多惊喜,甚至在医疗、创作、教育等领域滋生一些不合常理的产品和乱象,引发大众对AI的质疑和声讨。
面对人工智能,外界提出的问题不再理想化,而是越来越现实。AI公司那么烧钱,到底什么时候才能赚到钱?作为普通消费者,似乎还未感受AI带来的美好生活?AI的价值真的有云计算、5G大吗?
尤其是商业化方面,前期上百亿的投入何时能收回,AI企业及其背后投资人都相当关心,毕竟曾被寄予厚望的诸多AI创企都还没看到盈利的曙光,反而还为赛道倒泼了一盆凉水。
尽管如此,硬着头皮上市业已成为AI创企的宿命,在寒武纪、商汤、旷视、云从之后,第四范式也开始冲刺IPO。
靠决策AI突围
和商汤、云从、旷视等不同,第四范式走的是决策AI的发展方向。何为决策AI,简单来说就是帮助企业进行经营、管理、生产的AI技术或解决方案,本质上和企业集成 SaaS服务类似。
招股书显示,第四范式的核心产品“先知平台”及解决方案的服务场景主要聚焦于销售和营销、风险管理、营运效率三大方面,以纯软件、软硬一体化、定制应用等服务方式帮助企业进行决策。
和云类比,第四范式的产品形式就是以IaaS为算力基础,向企业提供PaaS和SaaS类服务,可以说第四范式是综合型的AI解决方案提供商。
商汤们走的多为产品AI路线,第四范式的决策AI与之区别主要集中于两点。第一,决策AI主要是to B或to G,而产品AI更多是to C或to B(G)to C;第二,决策AI目的是帮企业提高效率,解决各种发展问题,产品AI则是让产品满足消费者需求,为大众带来更好体验。
根据招股书,第四范式目前服务的行业已经有数十个,包括金融、能源、运输、零售、医疗、制造等。
理论上看,决策AI的想象力非常大,是所有企业智能化升级的刚需。究其原因,决策AI不仅仅是经营层工具,更是战略层工具。今天我们谈云计算,更多是说企业需要数字化升级,需要信息技术中台,但却容易忽略企业的战略数字化需求,决策AI恰好能够解决这类需求。
从营收增速来看,决策AI正在步入快速商业化阶段。第四范式招股书显示,2019至2021三年,营收分别为4.6亿、9.4亿、20.2亿,明显扩大。
分行业来看,能源电力、电信、运输等产业对决策AI的需求持续扩张。根据招股书,2021年第四范式分行业收入占比中,能源电力、电信、制造行业分别同比提高7.2个百分点、0.9个百分点、2.6个百分点。
在零售、金融这些AI早期大规模商业化应用主流场景之外,第四范式正在更多规模化、重资产行业打开局面,表明决策AI的应用潜力比较可观。
甩不掉通病
虽以决策AI突围,占据赛道的一方天地,但第四范式终究还是人工智能玩家,无论看变现模式,还是商业进度,都和商汤、云从们大同小异。因此,第四范式也难逃AI玩家所面临的发展通病。
尚难扭转的亏损,是第四范式逃不开的第一个通病。此前商汤、云从等首次披露财务数据时,就因不小的亏损引发舆论风波。
招股书显示,第四范式2022H1的经调整经营亏损为2.2亿,同比收窄12%。而过去三年(2019至2021年),第四范式的经调整经营亏损分别为3.2亿、3.9亿、5.7亿。
第四范式的亏损原因和其他AI玩家一样,还是费用太高,毛利难以覆盖。不过客观来说,AI企业亏损太正常了,商业化早期阶段,技术和营销两个费用大头难以避免,如果抛开这些,AI企业其实有着吓人的“高毛利”,软件部分甚至能达到90%以上,但是AI企业是技术驱动型企业,商业化中后期可能不太需要营销,但对研发的投入需要坚定不移。
目前来看,第四范式的亏损财务表现有改善迹象,2022H1的主要费用都有下降,但是后续能否实现扭亏或步入稳步盈利阶段还是未知数,一方面要看收入增速,另一方面要看成本优化。
变现的持续性,是第四范式逃不开的第二个通病。这里的变现持续,不是指能否找到新客户,而是老客户带来的新收入,可理解为客户收入留存。
从招股书来看,单个客户为第四范式贡献的收入峰值在首年,也就是合作初期,此后能贡献的收入水平相对偏低。比如2019年,排名第一的客户A与第四范式交易额为9444.9万,占比20.9%,此后的2020、2021年前五大排名中均未见到客户A。
可能有两个原因。第一,第四范式的商业模式包含软件许可模式,用户购买相当于一次性买断,后续的付费标准基于额外算力规模,无需再为软件付费;第二,用户已购买第四范式的全部产品及服务,后续基于额外算力的付费规模不大。
这也意味着,新客户或者新产品的首次交付,才能驱动第四范式营收的显著增长。这就不难理解,为何第四范式要加速向更多行业比如运输、医疗进行渗透,甚至采用资本并购垂直行业玩家的方式来加速取得市场份额。
被动跟随扩张产业
疫情之下,AI和云类服务受到两方面不利影响,一是现场部署性业务无法开展或开展阻力大,二是不少主体收缩性行业或产业需求疲软。
阿里云、腾讯云向通信、电力产业延伸布局,商汤强化新能源汽车产业业务布局,都是为应对产业波动而作出的业务方向调整。可以说,当前的情况下,数字化智能化服务商只能被动跟随那些具备扩张效应的行业。
第四范式目前重点押注能源电力、医疗、运输等产业对决策AI产品和服务的需求,一方面是部分产业因疫情等因素处于需求疲软状态。招股书显示,2022H1,第四范式来源于金融、媒体行业的收入分别同比下滑20%、63%。
另一方面,能源电力、医疗、运输、制造等行业处于数字化改造繁荣期,且在融资层面更受青睐。根据招股书,2022H1,第四范式来源于能源电力、电信行业的收入分别同比增长35%、100%。
另外,从客单价来看,能源电力等行业由于业务规模和复杂度等原因,能够给第四范式带来更高的交易净值。比如2021年,为第四范式贡献收入最高的能源电力和零售行业客户,分别产生的交易额为1.3亿和3329万。
对第四范式来说,被动跟随扩张产业的利弊比较清晰。好处是第四范式可以享受到扩张产业的技术升级红利,更快打造标杆客户,对整个产业形成品牌辐射效应,降低营销和销售压力。
但是挑战也很明显,每个产业的业务模式和需求都不同,进军和摸透新产业需要更多的学习成本、技术成本、渠道成本,第四范式需要不断为新产业进行新投入,才能有效打开业务边界。
应用价值远重于盈利
今天大家都在诟病AI企业亏损多,这是商业层面的判定,我们应当更在意的是AI技术的应用价值,如果应用价值受到认可或者的确为企业、政府或个人带来改变和颠覆,那么它自然不会被淘汰,商业层面的盈利也是迟早之事。
其实从成本角度来看,像第四范式这样的AI玩家,对企业的价值显而易见,那就是降低门槛。根据灼识咨询预估,企业自建企业级AI系统的初期成本大概5亿,后期年度运维成本在5000万左右,而外采的年度成本在0.5亿到1亿之间。
而无论是决策AI,还是产品AI,未来仍然具备相当价值潜力。第一,产品和服务层面,带来持续的效率颠覆体验,典型如自动驾驶;第二,企业发展层面,形成独特的AI技术中台,统筹生态,作出长远可行的战略决策。
人与AI共治企业、社会,并服务于消费者和公众,应当是人工智能长期相对理想的存在状态,也是人工智能对于人类社会的终极价值所在。
但相对于这一设定时期,现在的AI赛道还处于排位赛、拉锯赛、淘汰赛阶段,第四范式们需要持续聚焦于三个议题:第一,我的AI产品如何保证持续的进化;第二,我的AI产品如何保证解决最核心的实际问题;第三,我的AI产品是否真的具备通用能力。
不应过度担忧盈利,急于AI的商业化变现,维护优势应用场景,保证适当的投入转化效率,让客户认可技术,相信技术是企业的血液,才是AI玩家长久突围的硬核逻辑。
免责声明:此文内容为第三方自媒体作者发布的观察或评论性文章,所有文字和图片版权归作者所有,且仅代表作者个人观点,与极客网无关。文章仅供读者参考,并请自行核实相关内容。投诉邮箱:editor@fromgeek.com。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。