目前大多数的机器学习是在处理器上完成的,大多数机器学习软件会针对GPU进行更多的优化,甚至有人认为学习加速必须在GPU上才能完成,但事实上无论是运行机器学习的处理器还是优化的深度学习框架,都不单只针对GPU,代号为“Skylake”的英特尔至强SP处理器就证明了这一点。
机器学习软件在英特尔至强SP系列白金版上的一系列基准测试性能表现与在GPU上非常相近,了解了底层架构之后,我们可以看到,在性能如此接近的情况下,使用GPU加速器更像是在购买一种“奢侈品”,用户在GPU以外还有很多其他的选择。毫无疑问,在用户只需要机器学习的情况下,“加速器”在性能和能耗方面更有优势,大多数人需要的不只是一台“智能的用于机器学习的服务器”,那就让我们来重点看一下英特尔至强SP 白金级处理器为什么是最佳的选择:
CPU优化深度学习框架和函数库
英特尔在基于GPU优化的框架中增加了CPU优化深度学习框架, 打破了深度学习框架偏重于GPU而忽视了CPU的行业现状,解决了目前这些框架缺乏CPU优化的实际问题。
•TensorFlow由谷歌开发,是一个领先的深度学习和机器学习框架,有面向Linux的处理器优化;
•Caffe是图片识别领域最受欢迎的应用之一,英特尔提供的优化可以在CPU运行时提高Caffe的性能;
•Torch是当下流行的深度学习框架,需要在优化的CPU上应用,可以通过英特尔软件优化(比如英特尔至强可扩展处理器)提高Torch在CPU上的性能;
•Theano是一个开源的Python库,很受机器学习程序员的欢迎,它可以帮助程序员高效地定义、优化和评估涉及多维阵列的数学表达式;
•Neon是一个基于Python的深度学习框架,目的是在现代深度神经网络上实现易用性和可扩展性,并致力于在所有硬件上实现性能的最大化。
•MXNet是一个开源的深度学习框架;
•Python及其函数库是机器学习应用里最受欢迎的基础组成,Python加速版过去几年里得到了广泛应用,并且可以直接下载或通过Conda、yum、apt-get或Docker images下载;
•BigDL是一个面向Apache Spark的分布式深度学习函数库。通过BigDL用户可以把自己的深度学习应用当作标准Apache Spark程序来编写,直接在现有Apache Spark或Hadoop集群上运行。在Torch基础上开发的BigDL可以为深度学习提供综合性支持:包括数值计算(通过Tensor)和高级神经网络;此外用户还可以利用BigDL把提前训练的Caffe或Torch模型载入Spark程序。英特尔曾声称在一个单节点至强处理器上(例如与GPU相比),BigDL中的处理速度比原始开源Caffe、Torch或TensorFlow要高一个数量级;
•英特尔MKL-DNN是一个开源的、性能强化的函数库,用于加速在CPU上的深度学习框架;
•英特尔数据分析加速库(DAAL)是一个包含了被优化的算法构建模块的开源函数库,针对大数据问题最相关的数据分析阶段。这个函数库适用于当下流行的数据平台,包括Hadoop、Spark、R和Matlab;
结果证明了一切,无论是TensorFlow、Caffe,还是Torch、Theano,这些深度学习框架都针对英特尔数学核心函数库(Intel MKL)和英特尔高级矢量扩展指令集(Intel AVX)进行了优化。通过CPU优化,TensorFlow和Caffe基准测试中的CPU性能分别提高了72倍和82倍。
机器学习加速器
科技与行业的发展都是瞬息万变的,机器学习的加速器也会从GPU转向FPGA、ASIC等等,除非我们永远只需要一台只能用于机器学习的服务器,只要在一台服务器上想实现可以支持各种的工作负载,英特尔至强可扩展处理器无疑是最佳的解决方案。加速器的选择正在变得多元化,这是整个行业的发展趋势,多核CPU(英特尔至强融核处理器,特别是“Knights Mill”版)和FPGA(英特尔至强处理器,包含Intel/Altera FPGA)都可以提供更灵活的选择、卓越的性价比和高能效。基于英特尔至强融核处理器训练或学习一个AlexNet图片分类系统的速度,是使用NVIDIA GPU的类似配置系统的2.3倍;英特尔至强融核处理器的性价比最高可以是GPU解决方案的9倍,每瓦性能高达8倍,英特尔Nervana将推出更多专为人工智能开发的产品。英特尔至强SP系列处理器为机器学习提供了卓越的性能,同时相比其他解决方案也为我们带来了更多的功能与选择,让我们在产品与行业的发展中都可以拥有更多可能。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。