在近期举办的2024大中华区高管交流大会上,Gartner发布了中国人工智能(AI)调研。Garter预测,到2027年,中国制造业的AI使用渗透率将以10%的年复合增长率上升。
“中国制造2025”计划将成功实施AI用例作为衡量智能制造成熟度的关键指标。中国的制造业覆盖广泛且运营流程复杂,在全球占据着显著地位。因此,其产生的庞大数据集推动着制造业的优化和智能化,这是实施AI不可或缺的原料资源。
Gartner研究总监龚慧巍表示:“中国制造业的运营产生了大量数据,而且数据已被视为是对AI最有价值的资产,中国有望成为AI算法开发、建模和成功实施用例的沃土。”
AI用例流程图介绍了制造业首席信息官(CIO)在对企业机构的AI用例进行定义、优先级排序和验证时应采取的步骤(见图1)。
图1:AI用例流程图
与IT和业务利益相关者共同定义用例
Gartner的制造业GenAI用例棱镜(见图2)根据价值和可行性,绘制了制造业中21个极具前景的GenAI用例。制造业和交通运输业的CIO可以借此启动战略对话,指导这一技术的投资决策。
图2:制造业GenAI用例棱镜
根据利益相关者工作重点进行用例优先级排序
根据用例对实现业务目标的作用、底层技术的成熟度以及企业的数字化成熟度,对路线图的用例进行优先级排序。为此,CIO应查看企业的制造运营数字化路线图、AI人才、能力鉴定和技术投资计划。
龚慧巍表示:“定义、建立和部署一个用于制造业的AI路线图是一项复杂的工作,需要项目倡导者和利益相关者之间的通力合作。”
验证AI用例的可行性和最终用户接受度
2022年Gartner中国AI调研中受访的AI领导者表示,“削减成本和合理分配资源”是行业引入AI的主要目标(见图3)。以资产为中心的制造业是最为重视成本削减的行业。
图3:引入AI的主要目标——按行业划分
龚慧巍表示:“预测性维护是制造企业的重要课题,因其可以维持高可用性,避免意外停机。对部分企业而言,这可以增加营收和利润。”
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。