医疗保健行业复杂而分散,往往缺乏协调或激励措施不匹配,导致资源配置效率低下。患者的结果、费用和治疗的有效性都受到碎片化的负面影响。
数据可用于改善碎片化系统,降低医疗成本海量数据一直是技术受众面临的主要挑战,因为它们非常分散,无法很好地排列在一起。为了针对患者的临床情况和参与偏好部署干预措施,许多平台使业务能够自动识别需要临床关注的情况。此外,该平台提供了患者活动的360度视角,创造了最佳的护理协调方案。世界卫生组织声称,医疗保健的效率、效果和患者的适应性都受到医疗保健行业使用的交付系统的影响。当选择一种基于结果的护理模式时,该模型可以保证临床目标,并在整个护理过程中连接患者的接触点,患者通常会做出正确的选择。然而,许多人在医疗保健行业遇到了困难。其实是因为大多都从医疗系统的角度考虑医疗保健问题,而不是从病人的角度。例如,患者每天去化验、去找初级保健医生、去开处方的时候都会有这种感觉。如果试图将这些信息整合在一起,为我们的患者创造更好的结果,这样他们就不必浏览所有这些不同的渠道。那就不会有一种感觉,即他们被故意哄抬价格。当然,我们可以用来缓解这些挑战的技术之一是协调管理。例如从患者管理的角度考虑整个人群,客户因此获得了一个宏观的视角。然后在微观层面上,我们可以从健康的角度来看,通过降低成本为患者带来更好的结果。在这种情况下,能够为每个患者提供独特的治疗策略是至关重要的。例如为客户提供一种定制的方法,使他们能够与企业合作,评估为服务他们的病人所付出的承诺和费用,并将其与他们以前所经历的结果进行比较。因此,我们也可以从总体人口的角度分析这些数据,包括医药、第三方数据、索赔数据,也就是我们自己的数据。通过将这些数据与第三方以及数字设备集成,在宏观层面上生成数据。有了这些信息,我们就能够在这一人群中进行区分,然后进行扩展干预,以确保遵守药物治疗或正确执行处方指示,从而创建一种预防用例。
为每个病人提供独特的治疗策略是至关重要的根据预测建模和机器学习的概念,能够直接或通过提供者接触到患者,如果他们有患糖尿病前期或糖尿病的风险,那么他们就可以在被送进急诊室之前采取行动,这提高了患者的治疗效果,同时也降低了消费者的长期成本。海量数据一直是科技受众面临的主要挑战,因为它们非常分散,无法很好地排列在一起。许多人正在解决他们自己的挑战,即如何为数据提供动力。因此,为每个病人提供独特的治疗策略是至关重要的。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。