尽管人工智能取得了巨大的进步,但在许多方面仍然存在局限。例如,在电脑游戏中,如果AI智能体未预先编程游戏规则,则必须尝试数百万次才能确定正确的选择。人类可以在更短的时间内完成相同的壮举,因为我们擅长通过使用语言将过去的知识转移到新的任务中。
在一个屠龙游戏中,AI智能体需要尝试许多其他的动作(对着墙或是花丛喷火),才能理解它必须杀死龙。然而,如果AI智能体理解语言,人类可以简单地使用语言来指示它:“杀死龙才能使游戏获胜”。
在人类如何概括技能并将其应用于新任务方面上,基于视觉的语言发挥着重要作用,这对于机器仍然是一个重大挑战。开发复杂的语言系统对于机器变得真正智能,并获得像人类一样学习的能力至关重要。
作为实现这一目标的第一步,百度IDL实验室开发了一个使用监督学习和强化学习的组合系统,允许虚拟教师向虚拟AI智能体教授语言,通过将语言与感知和动作连接起来,就像父母教他们的宝宝一样。
IDL实验室的结果表明,在训练结束后,AI智能体能够以自然的语言正确地解读老师的指令,并采取相应的行动。更重要的是,AI智能体开发了“zero-shot学习能力”,这意味着智能体能够理解潜在的语句,研究院发现,“这项研究使我们向教机器像人类一样学习迈进一步。”
论文链接:http://arxiv.org/abs/1703.09831
学习概况
雷锋网了解到,该研究在称为XWORLD的2D迷宫般的环境中进行,百度的虚拟智能体需要根据虚拟教师发出的自然语言命令进行导航。一开始,智能体对这种语言一无所知,每一个字都同等的没有任何意义。 然而,当它探索环境时,如果执行命令成功(或失败),老师会给出积极的(或消极的)回应。
为了帮助智能体学习得更快,老师还会在智能体导航时询问有关环境的简单问题。智能体需要正确的回答问题。通过鼓励正确的行动/答案,惩罚不正确的行动/回答,经过多次试验和错误,老师得以训练智能体去了解自然语言。
一些示例命令包括:
请移动到苹果处。
你可以移动到苹果和香蕉之间的网格吗?
你能移动到红苹果处吗?
一些Q&A的例子:
问:北方的物体是什么?答:一根香蕉。
问:香蕉在哪里?答:北边。
问:苹果西边物体的颜色是多少? 答:黄色
结果
最后,智能体能够正确地解释教师的命令并导航到正确的地方。更重要的是,智能体开发了研究团队的所谓的“zero-shot learning ability”,这意味着即使是以前没有看到的全新命令,如果有足够的以前看过的相似形式的句子,仍然能够正确的执行任务。换句话说,智能体能够以已知的方式(语法)理解用已知单词组合的新句子。
例如,一个学习如何用刀切一个苹果的人将会知道如何用刀切火龙果。将过去的知识应用于新任务对于人来说非常容易,但是对于目前的端到端学习机器来说仍然是困难的。
虽然机器可能知道“火龙果”的样子,但是除非它已经使用包含该命令的数据集进行了明确的训练,否则它无法执行“用刀切割火龙果”的任务。相比之下,我们的智能体表现出能够转移它所知道的关于火龙果的视觉外观,以及“用刀切”的任务,即使没有经过确切的的训练,仍然可以成功进行用“用刀切割龙果”的任务 。
下图展现了我们的智能体成功执行导航任务测试。
导航语句
请移动到卷心菜的西边。
请移动到无花果的东边。
识别语句
Q:东南边是什么?
A:西瓜。
导航测试
请移动到无花果的西边。
导航语句
你可以移动到椰子处吗?
你可以移动到苹果处吗?
导航测试
你可以移动到西瓜处吗?
雷锋网(公众号:雷锋网)了解到,百度研究院的后续研究有两个方向:
一个是在当前2D环境中用自然语言命令教授智能体更多的能力,
另一个是将其迁移到虚拟3D环境。虚拟3D环境带来更多的挑战,而且更像是我们现实生活的环境。
而百度的最终目标,是让人类在现实环境中,采用自然语言来训练一个真正意义上的机器人。
- Meta Orion 豪门梦碎:最强版本2027亮相,眼镜内置摄像头,AR眼镜新时代何时开启?
- 苹果在中国市场遭遇重大挫折:2024年第四季度销量大跌18%,被华为和小米超越
- 跨生态互联新篇章:绿米Aqara Matter高阶桥接功能引领智能家居新潮流
- 极空间NAS新功能曝光:文档同步2.0、多端播放器,办公利器升级版等你来体验
- 国产NAS系统飞牛私有云fnOS升级,新增虚拟机功能,数据管理更高效
- 小米路由器BE6500 Pro升级新固件,新增与Home Assistant深度整合,本地控制更便捷
- 智能洗地机器人新品发布:萤石推出全新视觉洗地机器人 RX30 Max,全面升级吸、拖、洗功能,全天候洁净守护
- 复古风尚与未来科技融合,Rogbid SR09智能钛合金戒指,59.99美元,探索未来生活新体验
- TCL雷鸟鹤6 Mini LED电视震撼登场:4K 144Hz+352分区背光,最低仅需2599元,颠覆视觉体验
- 智能门锁市场风云变幻:2024年销量下滑,小米领跑线上,行业面临挑战与机遇
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。