8月28日,AICC2019人工智能计算大会在京举行,中国工程院院士、浪潮集团首席科学家王恩东在大会上表示,智慧时代,计算力就是生产力,计算力是推动AI发展的根本动力。另外,当前AI完成了从技术创新到产业化的转变,正在同金融、电信等传统行业相结合,进入“产业AI”阶段,推进产业AI化需要一个统一融合的AI生态。
本届大会以“计算,预见AI未来”为主题,参会者超过2000人,包括来自中国工程院、英国皇家工程院、中国新一代人工智能发展战略研究院等学术机构的专家学者,以及Facebook、Uber、Intel、NVIDIA、VMware、百度云、阿里云、浪潮、广汽研究院、吉利汽车研究院、寒武纪、IDC、SPEC组织等数十位AI知名公司与研究机构技术主管、资深工程师,会议议题涉及芯片、计算框架、AI测试基准等AI专业技术领域,以及自动驾驶、两化交易、智能诊疗等前沿AI领域,展现了当前AI领域最新的技术和应用进展。
智慧时代,计算力就是生产力
人类正在经历人工智能引发的第四次科技革命,开始进入智慧时代。王恩东说,在智慧时代,计算力就是生产力。此前,IT技术已经引发了多次生产力变革,但是前几次的变革主要改变的是生产工具和劳动对象,而智慧时代,生产力的三要素都会深受AI和计算的影响,尤其是劳动者,很多职业和岗位会被替代。
计算已经深刻改变了全球生产力,计算力指数可以衡量一个国家地区甚至是企业的发展水平。10年前全球市值最高的十个企业,都来自能源、金融、通信等传统领域,只有一家IT企业微软。今天全球市值最高的TOP10企业,清一色都是互联网企业,只有一家来自传统行业的沃尔玛。这些市值TOP级的企业也是全球计算力消耗最大的,他们的市值排名状况和服务器采购基本一致。
不仅企业领域如此,国家地区的发展水平也与计算力水平高度相关。在本届大会上,IDC与浪潮联合发布了《2019-2020中国人工智能计算力发展评估报告》,报告公布了最新的人工智能计算力城市排名,北京超越杭州跃居第一,广州进入第一梯队,杭州、深圳、上海分列2-4名,苏州、重庆、南京、西安首次跻身前十。排名的变化显示,四大超一线城市在人工智能技术、应用、人才等领域的“吸附”效应开始凸显,同时围绕京津冀、长三角、大湾区三大经济圈形成的人工智能三大产业集群已初具雏形。
计算力是AI发展的根本动力
人工智能有60多年的发展历史,几经起落,当前的复兴就是GPU等创新计算技术与深度学习相结合而直接触发的。在实际的应用当中,相比云计算和大数据等应用,人工智能对于计算力的需求几乎是无止境的。事务处理、WEB接入等传统计算,因为应用规模和场景有限,对于计算力的需求也有限。但是AI对于计算力的需求是无限的,是指数级的增长,而不是线性增长。从2012年到现在,每3.5个月用于AI计算的计算量会翻一倍,增长了30万倍,远远超过了芯片性能提升的摩尔定律。在半导体技术在逐步接近极限的情况下,计算力的提升更多是依靠体系结构的突破来实现的,所以这几年计算机发展迎来了体系结构创新的黄金期,GPU、FPGA以及ASIC等异构技术是AI计算力增长的主要技术支撑。
AI准确度也是算出来的
人工智能一个最大的挑战是识别度不高,准确度不高,提高准确度就要提高模型的规模和精细度,提高线下训练的频次,这需要更强的计算力支持。所以说,准确度也是算出来的。现在很多资金充裕的公司,比如大型互联网公司或者明星AI创业公司,有能力部署规模比较大的AI计算平台,算法的模型已经大到千亿参数、万亿的训练数据集规模,这些公司的算法和技术就处于领先位置。
在投资方面看,用户在人工智能领域的资金有50%以上都用来采购GPU服务器等基础架构产品,根据IDC的数据,中国人工智能基础架构市场在中国未来五年的复合增长率超过33%,是一般IT基础设施市场增速的三倍多。阿里、百度等互联网企业在开发AI芯片,也出现了一批像寒武纪等开发专用AI芯片的公司。随着计算需求的增长,会有越来越多的新架构、芯片和其他技术出现。
趋势:从AI产业化到产业AI化
数据爆发的增长、算法创新加速和计算能力的快速提升,让人工智能在全球范围内迅速从一个科学学科变成了规模产业。前几年AI发展的主体基本上是阿里巴巴、百度等大互联网企业,以及旷视、第四范式等AI创业公司。互联网企业都是自作自用,用AI来升级原来的业务或者推出新的运营业务,像天猫购物的智能推荐、百度的搜图。AI创业公司开发算法、做训练后,更多的还是去融资,能够投入更多的钱。在这种模式下,AI成为一个规模产业,但是很难支撑起下一步的增长。
现在,传统行业用户在AI产业的增长中扮演着越来越重要的角色。变化不很快,但是正在发生。根据IDC的数据,从2018年起,金融和传统企业和政府用户,在人工智能基础架构领域的采购量超过了互联网。现在很多大型企业的热线服务,已经用人工智能替代人工,很多企业都认识到了人工智能会带来的巨大潜力,今天不用人工智能,未来发展上会遇到困难和瓶颈,甚至发展不下去。
产业AI化需要解决生态问题
要发展人工智能,让人工智能进入各个传统产业,不能仅仅靠技术本身,生态的作用会越来越重要。国内的人工智能的应用大多是单点、单技术的应用,例如人脸识别、考勤打卡、交通监控管理等,在美国,AI与其他技术整合为解决方案,比如金融业的风险管理、证券行业的高频交易等等,实现流程的自动化,改变行业的传统业务模式,应用的差距十分明显。
中国要推进产业AI化,需要普及AI应用,更需要深化AI应用,推动AI从单点应用走向深度整合方案。王恩东表示,要从根本上解决应用的问题,就要建立开放融合的人工智能生态,从底层硬件到上层应用软件,产业的上中下游要紧密配合,面向多样化个性化的用户需求,向终端用户提供整体解决方案,才能让人工智能用起来,用好。
最后王恩东表示,无论是AI产业化还是产业AI化,AI产业未来发展空间巨大,今天看AI仍然是黑科技,因为AI的应用才刚刚起步。
在大会现场,众多厂商展示了在人工智能不同领域的成果,Uber披露了最近在橡树岭国家实验室summit超算上实现了目前规模最大的Horovod训练集群,VMware展示了与中国科技大学国家类脑工程实验利用GPU虚拟化技术支撑智慧教育的整体解决方案,平安科技展示了当下最热门的联邦机器学习产品及应用,四维图新展示了自主研发的L4级别无人驾驶汽车。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。