近日,小米举办号称“史上最多重磅新品齐首发”的发布会。会上,包括小米8、MIUI10等在内的一系列重磅新品正式亮相。其中,有着“国产良心系统”之称的MIUI10尤其引人关注,作为小米此次发布会最先登场的新一代手机系统,MIUI10以“全面屏”为核心设计,针对全面屏操作进行了全方位支持和优化,同时全面应用AI,不但能够帮助用户轻松搞定复杂的操作,而且能够带给用户更好的高清画质体验。接下来,我们就一起探寻MIUI10背后的高清画质“神器”。
KIE:将图片变清晰的“神器”
这种将图片变清晰的“神器”,就是KIE(Kingsoft Image &AI Enhancement)。KIE是金山云近期推出的基于AI技术的画质增强产品,将其应用于移动终端或图片传输中,可为用户带来超清的图像视觉体验,或者节省3/4的图片传输带宽成本。
小米MIUI官网对于KIE的介绍
随着移动终端特别是手机分辨率的不断上升,更高分辨率图片的需求也与日俱增,这是因为低分辨率的图片,如果放到高分辨率的屏幕下,就会让视觉效果变得很差。如果720P的图片放在1080P的屏幕上,就会出现这样的问题。
高分辨率屏幕下显示低质量图片,会让视觉效果变差
而传统的解决方案——插值算法,包括双线性插值和临近插值,但这种方法往往会导致边缘出现锯齿、模糊等问题,将大幅降低图片的视觉效果。金山云KIE则基于人工智能技术,对图像重建使其高清放大,适配更高清的屏幕,同时对画面的马赛克、毛刺区域进行修复,提升图片视觉效果。
采用KIE画质增强功能的图片效果对比
采用KIE画质增强功能的图片效果对比
KIE的秘密武器:超分和修复
KIE是如何做到这些的呢?原来,它有两种秘密武器——KIE包含超分辨率(以下简称“超分”)和修复两种技术,在深度卷积神经网络上,KIE的超分模型构建了一个七层的网络,能够有效提升图片质量,解除图片超分时模糊、纹理不清晰等问题。深度卷积神经网络可依据图片重建细节,实现清晰度远超原图的效果。KIE在网络结构、模型训练上进行了大量的探索和尝试,实现了优秀的图像超分和去噪效果。
采用KIE画质增强功能的图片效果对比
细节对比
KIE三倍图片放大效果对比
首先,在网络结构上,KIE采用了Mobile Net V2构造高效的网络模型。KIE结合残差学习思想,有效减少学习难度,采用跨层密集连接结构,利于梯度传播,使得深度网络在更短的时间内学习到更好的模型。采用金字塔结构,使得底层的特征和顶层的特征能够更有效融合。此外,在训练loss上,模型采用SSIM、图像内容损失等,让图片生成更加锐利的细节。
KIE采用金字塔结构,使得底层的特征和顶层的特征能够更有效结合
第二,在模型的训练上,KIE收集了30万张高清图片,确保内容丰富,采用多种方法模拟真实网络图片的生成过程,从而保证模型在推断时达到更好的效果,能够适应绝大部分网络图片,确保学习的全面性。同时进行数据混合,将不同大小倍数的图像混合在一起训练,从而支持不同倍数图片的高清化。
KIE的残差学习结构:加快训练速度并提高图像质量
针对在YUV三通道图像中,人眼对Y通道中最为敏感的特点,KIE针对Y通道和UV通道分别采用不同网络,其中Y通道复杂度高于UV通道的复杂度,在保证人眼质量的情况下,加快了训练和推断速度。
KIE针对微信、今日头条等主流网络图片聚集地进行调研,发现很多分辨率较小的图片,如果与目前主流的移动终端进行匹配,需要放大三倍,这意味着需要对图片的更多细节予以处理,因此难度更大。KIE以经过训练的3X网络对图片进行处理,经过卷积网络的学习和增强,最终提升了图片的质量。
KIE的应用场景
目前,KIE以SDK形式集成到各种应用场景中,包括各类手机厂商系统、超级APP应用、浏览器等。在同等主观质量下,KIE具有SDK体积小、推断速度快和内存占用少的特点,且能够适应多种平台。
在底层优化上,KIE采用模型压缩和量化技术,有效减少SDK的大小和推断速度。并且,采用金山云AI团队构建的高效的深度神经网络实现,在CPU上的推断速度达到了Google tensorlite的二到三倍,内存消耗也大大减少,为KIE的技术推广奠定了基础。
同时,KIE具有强大的跨平台特性,目前支持Android、iOS、PC平台和WEB端,接口简单快速接入。可在终端上实时处理,与解码器完全解耦,图片在移动终端上能够达到毫秒级响应,全面提升用户的浏览体验。
名词解释:
MobileNetV2:是对MobileNetV1的改进,是一个轻量化卷积神经网络。
SSIM:SSIM(structuralsimilarityindex),结构相似性,是一种衡量两幅图像相似度的指标。该指标首先由德州大学奥斯丁分校的图像和视频工程实验室(Laboratory for Image and Video Engineering)提出。SSIM使用的两张图像中,一张为未经压缩的无失真图像,另一张为失真后的图像。
Google tensorlite:即TensorFlow Lite,Google称Lite版本TensorFlow是TensorFlow Mobile的一个延伸版本。尽管是一个轻量级版本,依然是在智能手机和嵌入式设备上部署深度学习的一大动作。此前,通过TensorFlow Mobile API,TensorFlow已经支持手机上的模型嵌入式部署。TensorFlow Lite应该被视为TensorFlow Mobile的升级版。
- 特斯拉Model Y新版预售,iPhone 18 Pro系列升级,汽车界与科技界碰撞新火花
- 小鹏汽车何小鹏回应特斯拉 Model Y 撞脸风波:设计碰撞,灵感碰撞,究竟谁更胜一筹?
- 日本车商2024年新车销量下滑,本田跌至近10年最低位,中国市场面临挑战?
- 英伟达批评美政府AI芯片出口限制:限制不利己,全球转向替代技术之风
- 特斯拉焕新Model Y难敌华为问界R7,智能科技谁领风骚?
- 开源巨头联手打造Chromium联盟,推动Linux生态创新发展
- 曹德旺巨资办校,福耀科技大学引领行业新风向,培养未来之星
- 爱驰汽车陷股权冻结风波,能否顺利复工复产引关注
- 小鹏汽车CEO何小鹏:雷军不仅直言不讳,还劝我多做营销,不失为良师益友
- 马斯克大胆计划:未来十年内特斯拉机器人产能提升10倍,300亿机器人将颠覆各行各业
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。