近几年随着AlphaGO的骄人战绩,人工智能和大数据备受追捧,热度空前。而在实际接触中,大家对人工智能和大数据的认知普遍是“只知其名不知其意”,因此对企业而言,猎头的推荐也往往与岗位匹配度不高。那么被人们认为高深莫测的AI和大数据的关系究竟是怎样的? 下图清晰表达了其逻辑及关联性。
上图中主要是三大块内容,分别是大数据,AI技术和解决问题,他们的关系如下:
- 大数据层 -
主要分为数据采集、数据存储及数据访问三个步骤。
• 数据采集
主要通过智能手环、智能手表、智能手机等各类智能硬件,重力传感器、温度传感器、湿度传感器等各类传感器以及摄像头、话筒等多种手段来采集各种所需数据。
• 数据存储
主要是将采集数据存储到数据库中。大数据的存储方式与传统的数据存储有很大不同。主要体现在存储格式、存储结构、以及分布式存储等方面。而分布式存储、共享存储则是数据存储中重要的核心技术。
• 数据访问
主要解决如何让AI技术层能够快速的获取所需数据。该层是大数据技术与AI技术的重要承接层,其最核心的技术为负载均衡。该技术解决了数据访问中的大数据并发、网络负荷过重等问题。
- AI技术层 -
分为基础算法、AI算法、AI框架和AI技术四个步骤,目的是获取数据之后,利用人工智能的算法和技术对数据进行分析。
• 基础算法层
基础算法层主要包含高等数学、矩阵分析、数值分析、概率统计分析等,是AI算法的奠基层。而AI算法来自于基础算法的支撑。我们对基础算法理解越深刻,对AI算法理解的也会更透彻。好像盖大楼的地基,地基打的越深,大楼才能盖的越高。
• AI算法层
AI算法层是在基础算法层之上构建的解决人类问题的人工智能算法层。
人类遇到的问题通常是由单一问题合并组成的复杂问题,解决问题的路径为将复杂问题拆解成多个单一问题后逐一进行解决。AI算法层即解决单一问题的通用方法层。比如拍照计算食物热量实际上包含食物识别、体积计算、质量计算、热量计算等四个子问题,而四个子问题则由各自组成的通用方法来解决。经过长达半个多世纪的发展,AI算法层已经研究出了一些通用方法即算法,包含分类算法、聚类算法、回归算法、优化算法、降维算法、深度学习算法等等。
• AI框架层
AI框架主要是对AI算法层的单个算法进行重新封装,它定义了很多类、方法、接口,使用者只需要调整相关参数即可实现算法,而不需要将算法完全实现出来,这样节省了大量的时间,使得应用算法来解决问题的AI研发人员更加专注于解决问题本身。目前常见的分类、聚类等传统的人工智能算法框架有SkLearn、Pandas等等,深度学习框架有Tensorflow、Caffe、Torch、PaddlePaddle。
• AI技术层
AI技术层主要是针对利用AI算法解决专业领域问题而提出的专用方法和算法。这种算法不具有通用性,是为解决某个领域的问题而定制研发的方法。目前AI技术主要包含自然语言处理(NLP)、机器视觉、语音识别、知识图谱、数据挖掘、分析决策。大家耳熟能详的技术都出自该层,也是AI技术层的最顶层。
• 自然语言处理(NLP)
自然语言处理领域主要是语义识别,开放域对话聊天,基于任务的对话,自动翻译(例如中翻英,英翻中)等。
• 机器视觉
机器视觉主要分为图像识别(识别图像或视频中的物体是什么),图像跟踪(视频中跟踪某个物体),三维重建(通过2D图片进行3D物体的构建)。
• 语音识别
该技术通俗的讲就是对人说的话转化成文字。
• 知识图谱
该技术是用来构建知识的网状结构,将一个个看似没有关系的知识点,通过该技术建立他们之间的关联关系,比如包含关系、并列关系、最终构建各个领域的知识网。然后再根据这个知识网解决用户的问答、推荐、预测、推理等问题。
• 数据挖掘
数据挖掘主要是对数据进行分类、聚类、预测等处理。
• 分析决策
主要是做策略制定,通过多维度收集的数据进行某个领域的决策并给出答案。
- 解决问题 -
基于大数据与AI技术的结合,能够真正实现为人类解决各种各样的问题。将这些问题进行归类汇总成几大类问题,常见的有聚类、分类、预测、推荐等问题。
• 分类问题
分类问题主要是判别某个物体属于哪个类别,比如橘子属于水果类、白菜属于蔬菜类。分类又分为二分类、多分类问题;二分类即是与不是的问题,比如这个物体不是香蕉,这个物体是香蕉;多分类问题,比如多种食物,一种食物是蔬菜,一种食物是水果,一种食物是肉。
• 聚类问题
聚类问题主要是将一批数据自动分成几类,比如说网站的用户群,自动分为活跃用户群、忠诚用户群、沉默用户群,这种用户群的确定是通过人工智能算法算的,而不是通过人工筛选的。
• 预测问题
预测问题主要是对某个趋势进行预测,比如房价趋势预测、网站的流量预测等等。
• 推荐问题
推荐问题主要是推荐同类偏好。比如A用户喜欢旅游,且是户外爱好者,而户外爱好者除了喜欢旅游,还喜欢户外装备,那就可以向A用户推荐户外装备,这就是典型的网站推荐逻辑。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 特斯拉改款Model Y即将量产,网红收入千万报税仅5000元引热议
- 美光发布60TB SSD:颠覆性能效比提升20%,存储升级从此绿色节能
- 极越员工喜提补偿方案:N+1标准落地,百度吉利掏钱,员工乐开花
- 欧洲车市寒冬再袭,特斯拉暴跌40.9%:电动车巨头也难逃销量下滑厄运
- 网红收入千万税费未达标准,偷漏税事件引热议:网红收入与纳税成反比
- 美国最高法将辩论禁令:TikTok的命运何去何从?
- 美国调查TP-Link路由器安全:回应符合行业标准,挑战国家安全审查新篇章
- 字节跳动自研AI GPU:打破依赖,摆脱英伟达,开启科技新篇章
- 特斯拉新款Model Y上海工厂下月改款量产,变革还是创新引人期待
- 苹果警告Meta:互操作性过度引发隐私安全风险,需谨慎行事
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。