作者:严涛
简介
集合可视化我们用得最多的是韦恩图,韦恩图在集合数少的时候是很好用的,但是当集合数多比如五个以上的时候那就会看花眼了,比如下面这副含有6个集合韦恩图,是发表在Nature上的文章里的,漂亮是漂亮,但是眼都快看花了。
今天介绍一个R包UpSetR,专门用来集合可视化,来源于UpSet,Python里面也有一个相似的包py-upset。此外还有个UpSetR shiny app以及源代码.
安装
两种方式安装:
#从CRAN安装install.packages("UpSetR")#从Github上安装devtools::install_github("hms-dbmi/UpSetR")
数据导入
UpSetR提供了两个函数fromList以及fromExpression将数据转换为UpsetR适用的数据格式。
#fromListlistinput <- list(one = c(1, 2, 3, 5, 7, 8, 11, 12, 13), two = c(1, 2, 4, 5,10), three = c(1, 5, 6, 7, 8, 9, 10, 12, 13))#fromExpressionexpressionInput <- c(one = 2, two = 1, three = 2, `one&two` = 1, `one&three` = 4,`two&three` = 1, `one&two&three` = 2)
接下来就可以绘制绘制图形了
library(UpSetR)upset(fromList(listinput), order.by = "freq")#下面绘制的图形等同于上图upset(fromExpression(expressionInput), order.by = "freq")
参数详解
下面所有的例子都将使用UpSetR内置的数据集movies来绘制。
#导入数据movies <- read.csv(system.file("extdata", "movies.csv", package = "UpSetR"), header = TRUE, sep = ";")#先大致浏览一下该数据集,数据集太长,就只看前几列knitr::kable(head(movies[,1:10]))
该数据集展示的是电影名(name)、发行时间(ReleaseDate)以及电影类型,多了去了就不详讲了,自个可以看去。
UpsetR绘制集合可视化图形使用函数upset()。
upset(movies, nsets = 6, number.angles = 30, point.size = 2, line.size = 1, mainbar.y.label = "Genre Intersections", sets.x.label = "Movies Per Genre", text.scale = c(1.3, 1.3, 1, 1, 1.5, 1))
解释一下上面部分参数:
nsets: 顾名思义,就是展示几个集合,movies数据集由20几个集合,不可能全部展示,另外从图中可以看出,这6个集合应该不是按顺序选择的。numble.angle: 柱子上的数字看到了吧,这个参数就是调整数字角度的,可有可无的mainbar.y.label/sets.x.label:坐标轴名称text.scale(): 有六个数字,分别控制c(intersection size title, intersection size tick labels, set size title, set size tick labels, set names, numbers above bars)。很多时候我们想要看特定的几个集合,UpSetR满足我们的需求。
upset(movies, sets = c("Action", "Adventure", "Comedy", "Drama", "Mystery","Thriller", "Romance", "War", "Western"), mb.ratio = c(0.55, 0.45), order.by = "freq")
文中的参数:
mb.ratio: 控制上方条形图以及下方点图的比例order.by: 如何排序,这里freq表示从大到小排序展示,其他选项有degree以及先按freq再按degree排序。各个变量也可以通过参数keep.order来排序
upset(movies, sets = c("Action", "Adventure", "Comedy", "Drama", "Mystery","Thriller", "Romance", "War", "Western"), mb.ratio = c(0.55, 0.45), order.by = "freq",keep.order = TRUE)
也可以按group进行展示,这图展示的就是按各个变量自身、两个交集、三个交集…依次展示。参数cutoff控制每个group显示几个交集。
参数intersects控制总共显示几个交集。
upset(movies, nintersects = 70, group.by = "sets", cutoff = 7)
还有很多参数比如控制颜色的参数,点、线大小等,具体可查看?upset
queries参数
queries参数分为四个部分:query, param, color, active.
query: 指定哪个query,UpSetR有内置的,也可以自定义,说到底就是一个查询函数param: list, query作用于哪个交集color:每个query都是一个list,里面可以设置颜色,没设置的话将调用包里默认的调色板active:被指定的条形图是否需要颜色覆盖,TRUE的话显示颜色,FALSE的话则在条形图顶端显示三角形内置的intersects query
upset(movies, queries = list(list(query=intersects, params=list("Drama", "Comedy", "Action"), color="orange", active=T),list(query=intersects, params=list("Drama"), color="red", active=F),list(query=intersects, params=list("Action", "Drama"), active=T)))
内置的elements query
此query可以可视化特定交集在不同条件下的情况
upset(movies, queries = list(list(query=elements, params=list("AvgRating", 3.5, 4.1), color="blue", active=T),list(query=elements, params=list("ReleaseDate", 1980, 1990, 2000), color="red", active=F)))
自定义一个query
myfunc <- function(row, release, rating){newdata <- (row["ReleaseDate"]%in%release)&(row["AvgRating"]>rating)}upset(movies, queries = list(list(query=myfunc, params=list(c(1950,1960,1990,2000), 3.0), color="red", active=T)))
添加query图例
upset(movies, query.legend = "top", queries = list(list(query = intersects,params = list("Drama", "Comedy", "Action"), color = "orange", active = T,query.name = "Funny action"), list(query = intersects, params = list("Drama"),color = "red", active = F), list(query = intersects, params = list("Action","Drama"), active = T, query.name = "Emotional action")))
参数attribute.plots
主要是用于添加属性图,内置有柱形图、散点图、热图等
柱形图
upset(movies, main.bar.color = "black", queries = list(list(query = intersects,params = list("Drama"), active = T)), attribute.plots = list(gridrows = 50,plots = list(list(plot = histogram, x = "ReleaseDate", queries = F), list(plot = histogram,x = "AvgRating", queries = T)), ncols = 2))
散点图
箱线图
箱线图可以展示数据的分布,通过参数boxplot.summary控制,最多可以一次性显示两个箱线图
upset(movies, boxplot.summary = c("AvgRating", "ReleaseDate"))
还有一个十分重要的功能Incorporating Set Metadata这里就不讲了,有兴趣的可以参考这份文档
SessionInfosessionInfo()## R version 3.4.2 (2017-09-28)## Platform: x86_64-w64-mingw32/x64 (64-bit)## Running under: Windows 10 x64 (build 15063)#### Matrix products: default#### locale:## [1] LC_COLLATE=Chinese (Simplified)_China.936## [2] LC_CTYPE=Chinese (Simplified)_China.936## [3] LC_MONETARY=Chinese (Simplified)_China.936## [4] LC_NUMERIC=C## [5] LC_TIME=Chinese (Simplified)_China.936#### attached base packages:## [1] stats graphics grDevices utils datasets methods base#### other attached packages:## [1] UpSetR_1.3.3#### loaded via a namespace (and not attached):## [1] Rcpp_0.12.13 knitr_1.17 magrittr_1.5 munsell_0.4.3## [5] colorspace_1.3-2 rlang_0.1.2 stringr_1.2.0 highr_0.6## [9] plyr_1.8.4 tools_3.4.2 grid_3.4.2 gtable_0.2.0## [13] htmltools_0.3.6 yaml_2.1.14 lazyeval_0.2.0 rprojroot_1.2## [17] digest_0.6.12 tibble_1.3.4 gridExtra_2.3 ggplot2_2.2.1## [21] evaluate_0.10.1 rmarkdown_1.6 labeling_0.3 stringi_1.1.5## [25] compiler_3.4.2 scales_0.5.0 backports_1.1.1
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- IDC:三季度全球以太网交换机收入同比下降7.9%、环比增长6.6%
- Fortinet李宏凯:2025年在中国大陆启动SASE PoP节点部署 助力企业出海
- Fortinet李宏凯:2024年Fortinet全球客户已超80万
- 央国企采购管理升级,合合信息旗下启信慧眼以科技破局难点
- Apache Struts重大漏洞被黑客利用,远程代码执行风险加剧
- Crunchbase:2024年AI网络安全行业风险投资超过26亿美元
- 调查报告:AI与云重塑IT格局,77%的IT领导者视网络安全为首要挑战
- 长江存储发布声明:从无“借壳上市”意愿
- 泛微·数智大脑Xiaoe.AI正式发布,千人现场体验数智化运营场景
- IDC:2024年第三季度北美IT分销商收入增长至202亿美元
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。