作者:车品觉
1865年,理查德·米勒·德文斯(Richard Millar Devens)在《商业趣闻百科全书》(Cyclopædiaof Commercial and Business Anecdotes)中提出了“商业智能”(BI)一词。他用这个词来描述银行家亨利·福尼斯(HenryFurnese)通过收集信息并根据这些信息,先于竞争对手采取行动,从而获利。1958年,IBM计算机科学家汉斯·彼得·卢恩(Hans PeterLuhn)撰文讨论了利用技术来收集商业智能的潜力。按照今天的理解,商业智能就是利用技术来收集和分析数据,将之转换成有用的信息,并根据这些信息,“先于竞争对手”采取行动。从本质上说,现代版的商业智能利用技术,在正确的时间,依据正确的信息,迅速且有效地作出决策。
1968年时,只有那些具备专业技能的人,才能把数据转换成可用的信息。那时,来自多个来源的数据通常储存在筒仓中,研究报告呈碎片化,彼此脱节,可以作出多种不同的解读。埃德加·科德(Edgar Codd)认识到,这是个严重的问题。1970年,他发表文章,改变了人们思考数据库的方式。他关于建立“关联式数据库模型”的提议获得了巨大关注,被全世界所采纳。
决策支持系统(DSS)是第一个数据库管理系统。很多历史学家都认为,现代版的商业智能是从DSS数据库演化而来。上世纪80年代,商业人士发现了商业智能的价值,于是BI供应商的数量大增。那期间,各种各样的工具纷纷面世,目标是以更简单的方式访问和组织数据。联机分析处理(OLAP)、主管信息系统(EIS)和数据仓库应运而生,与DSS协同工作。
OLAP
OLAP让用户可以分析多来源数据,并提供多个范式或视角。OLAP的数据库采用多维数据模型,支持复杂分析和即席查询。OLAP的标准应用包括:
销售业务报告营销管理报告业务流程管理(BPM)预算编制和预测财务报告和类似领域新应用,比如农业OLAP“曾经”非常流行,因为它提供了多种多样的信息收集和组织方式。作为基于SQL的程序,OLAP在NoSQL流行起来后,就渐渐失势。(现在,Kyvos Insights、Platfora和AtScale等公司把OLAP叠加到NoSQL库之上。)OLAP支持三个基本操作:
合并下钻切片和切丁合并是指把那些可以通过多种方式储存和处理的数据结合起来。例如,所有分支机构的汽车销售数据由销售经理汇总,以预测销售趋势。下钻是指查看和分析更详细的数据,比如按照颜色、类型或燃料种类,来查看汽车销售数据。切片和切丁是指选取OLAP立方体中的特定数据,从不同的角度,进行细致观察。
EIS
上世纪70年代末,CEO们开始使用互联网来探究商业信息。EIS由此诞生,为高管提供决策方面的支持。EIS旨在提供“简化”决策过程所需的适当和最新信息,强调以图表和易用界面的方式,来呈现这些信息。EIS的目标是把高管变成“亲自动手”的用户,让他们自己处理邮件、进行研究、作出任命和阅读报告,而不是通过中间人接收这些信息。但由于作用有限,EIS渐渐失宠。
数据仓库
上世纪80年代,企业开始经常使用内部数据分析解决方案(由于当时计算机系统的限制,这通常是在下班后和周末进行),因此数据仓库开始流行。在数据仓库出现之前,企业需要大量的数据冗余,以便向参与决策的所有人提供有用的信息。数据仓库大幅缩短了访问数据所需的时间。通常储存在多个地方(往往是部门筒仓)的数据,现在可以储存在同一个地方。
数据仓库还有助于推动大数据的使用。突然之间,数量庞大、形式多样的数据(电子邮件、互联网、Facebook、Twitter等等)可以从同一个地方访问,这节约了时间和资金,并且还能访问先前访问不了的商业信息。在提供由数据驱动的洞见方面,数据仓库潜力巨大。这些洞见可以提高利润、发现欺诈、减少损失。
商业智能迈向高科技
1988年,在罗马举行的多路数据分析大会结束后不久,商业智能开始作为一个技术概念出现。在这场大会上得出的结论促使人们开始简化BI分析,并使之对用户更加友好。BI企业大量涌现,每家新公司都提供新的BI工具。在那个时期,BI有两项基本功能:产生数据和提供报告,并以适当的方式组织和呈现数据。
20世纪末、21世纪初,BI服务开始提供简化的工具,降低决策者对工具的依赖度。这些工具更易于使用,而且提供所需的功能,非常有效。商业人士可以通过直接与数据打交道的方式,收集数据,获取洞见。
商业智能VS数据分析
目前,商业智能和数据分析常常被混用。这两个术语都描述了在商业决策过程中使用数据的普遍实践。商业智能代表了为决策者提供辅助的一系列技术,而数据分析则代表了处理数据的一系列工具,并且作为一个统称,涵盖了数据仓库、企业信息管理、商业智能、企业绩效管理和企业治理。
描述性分析
描述性分析是指描述和总结数据,主要聚焦历史信息,通过描述过去,帮助用户了解以前的行为如何影响现在。描述性分析能用来解释企业如何运作,描述业务的不同方面。在最理想的情况下,描述性分析能讲述一件具有相关主题的事情,并提供有用的信息。
预测性分析
预测性分析能预测未来,它利用统计数据,为企业提供关于未来变化的有用信息,比如判断销售趋势和购买模式、预测消费者行为。其商业用途通常包括,预测销售增长速度、消费者可能购买哪些产品,以及预测库存总量。信用评分是这类分析的一个用例,金融服务机构利用信用评分来评估客户按时还款的可能性。
规定性分析
规定性分析是一个相对较新的领域,应用难度还比较大。它会“规定”几个不同的可能行为,引导人们找到解决方案。这类分析的核心在于提供建议。从本质上说,规定性分析会预测今后可能出现的多种情况,并让企业根据他们的行为,对可能出现的多种结果进行评估。在最理想的情况下,规定性分析可以预测将来会发生什么、为什么会发生,并提供建议。一些大公司已经利用规定性分析,成功优化了日程安排、收入流和库存,从而改善了客户体验。
流分析
流分析是一个实时过程,不断计算、监测和管理基于数据的统计信息,并根据这些信息,“先于竞争对手”采取行动。这个过程中,你可以在任何特定时间,了解市场上发生的事件,并根据这些事件采取行动。作为一种新的工具,流分析大幅改善了提供给决策者的有用信息流。
用于流分析的数据可以有多种来源,包括手机、物联网、市场数据、交易和移动设备(平板电脑和笔记本电脑)。它能迅速有效地将管理人员和外部数据源联系起来,让应用程序把数据并入一个应用流,或者用处理后的信息更新外部数据库。流分析支持:
最大限度地减少社交媒体危机、安全漏洞、飞机失事、制造缺陷、股市暴跌、客户流失等事件造成的损失实时分析企业日常经营利用大数据寻找错过的机遇创建新的商业模式、收入流和产品创新芝加哥利用MongoDB开发的WindyGrid项目就是流分析的一个用例。WindyGrid把来自各个市政部门的700万个数据点加以整合,让芝加哥市政人员可以分析数据,预测哪里需要资源,然后相应地分配资源,有效地解决问题。市政人员可以更迅速地作出更明智的决定,更有效地分配资源。WindyGrid为芝加哥带来了革命性的变化,使之能够以具有成本效益的方式,了解、准备和应对各种各样的情况。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 央国企采购管理升级,合合信息旗下启信慧眼以科技破局难点
- Apache Struts重大漏洞被黑客利用,远程代码执行风险加剧
- Crunchbase:2024年AI网络安全行业风险投资超过26亿美元
- 调查报告:AI与云重塑IT格局,77%的IT领导者视网络安全为首要挑战
- 长江存储发布声明:从无“借壳上市”意愿
- 泛微·数智大脑Xiaoe.AI正式发布,千人现场体验数智化运营场景
- IDC:2024年第三季度北美IT分销商收入增长至202亿美元
- AI成为双刃剑!凯捷调查:97%组织遭遇过GenAI漏洞攻击
- openEuler开源五年树立新里程碑,累计装机量突破1000万
- 创想 华彩新程!2024柯尼卡美能达媒体沟通会焕新增长之道
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。