北京时间8月20日,特斯拉在美国成功举办AI Day活动。特斯拉CEO伊隆·马斯克、人工智能部门总监Andrej Karpathy等多位工程师,在线讲解特斯拉纯视觉方案FSD的进展、神经网络自动驾驶训练、D1芯片、Dojo超级计算机等相关信息。
特斯拉的纯视觉传感器方案的实现,离不开多任务学习HydraNets神经网络架构。每辆特斯拉汽车拥有8个环绕车身、覆盖周围360°的摄像头,来获取交通信号灯、信号牌、匝道、路缘等周边信息,为神经网络学习提供了绝佳条件。
Andrej说:“我们希望能够打造一个类似动物视觉皮层的神经网络连接,模拟大脑信息输入和输出的过程。就像光线进入到视网膜当中,我们希望通过摄像头来模拟这个过程。”
多任务学习HydraNets神经网络架构可以将8个摄像头获取的画面拼接起来,并完美平衡视频画面的延迟和精准度。通过人工或自动标注车道、车辆、信号灯、障碍物等环境和动静物体,系统会逐帧分析视频画面,了解物体的纵深、速度等信息,再将这些数据交给车队学习。
但是在这个过程中,特斯拉发现了几个问题:这些参数和空间追踪是很难通过C++这个基础架构实现拼接的;有一些空间数据的输出质量不高;不同摄像头获取的物体信息不同,拼合时很难进行整体把握。
为解决这些问题,特斯拉开发了“矢量空间”(Vector Space)技术,同时兼具了非凸优化算法(Non-convex)、高维度两大优势。该技术可以通过8个摄像头输入的数据为基础绘制3D鸟瞰视图,形成4D的空间和时间标签的“路网”以呈现道路等信息,帮助车辆把握驾驶环境,更精准的寻找最优驾驶路径。
有了海量、精准的视频数据,特斯拉还需要创造一个强大的神经网络,并对网络进行特殊的布局,使这些数据能在一个总的主干网络上进行整合和重新分析。因此,特斯拉“高楼平地起”,自主研发了基于神经网络的训练方式。
特斯拉拥有一支由世界各地人才组成的数据标注团队,规模在1000人左右。团队每天对视频数据中的物体在“矢量空间”中进行标注,在善于把握细节的人工标注和效率更高的自动标注配合下,只需要标注一次,“矢量空间”就能自动标注所有摄像头的多帧画面。这为特斯拉带来了上百亿级的有效且多样化的原生数据,而这些数据都会用于神经网络培训。
同时,特斯拉还开发了“仿真场景技术”,可以模拟现实中不太常见的“边缘场景”用于自动驾驶培训。在仿真场景中,特斯拉工程师可以提供不同的环境以及其他参数(障碍物、碰撞、舒适度等),极大提升了训练效率。
由此,特斯拉FSD系统已可以实现每1.5毫秒2500次搜索的超高效率,预测可能出现的各种情况,并在其中找到最安全、最舒适、最快速的自动驾驶路径。
当下,随着所需处理的数据开始指数级增长,特斯拉也在提高训练神经网络的算力,因此,便有了特斯拉Dojo超级计算机。
特斯拉的目标是实现人工智能训练的超高算力,同时还要扩展带宽、减少延迟、节省成本。这就要求Dojo超级计算机的布局,要实现空间和时间的最佳平衡。
组成Dojo超级计算机的关键单元,是特斯拉自主研发的神经网络训练芯片——D1芯片。D1芯片采用分布式结构和7纳米工艺,搭载500亿个晶体管、354个训练节点,仅内部的电路就长达17.7公里,实现了超强算力和超高带宽。
1500个D1芯片共53万余训练节点,组成了Dojo超级计算机的训练模块。由于每个D1芯片之间都是无缝连接在一起,相邻芯片之间的延迟极低,训练模块最大程度上实现了带宽的保留,配合特斯拉自创的高带宽、低延迟的连接器,算力高达9PFLOPs(9千万亿次)。
得益于训练模块的独立运行能力和无限链接能力,由其组成的Dojo超级计算机的性能拓展在理论上无上限,是个不折不扣的“性能野兽”。实际应用中,特斯拉将以120个训练模块组装成ExaPOD,它是世界上首屈一指的人工智能训练计算机。与业内其他产品相比,同成本下它的性能提升4倍,同能耗下性能提高1.3倍,占用空间节省5倍。
与强大硬件相匹配的,是特斯拉针对性开发的分布式系统——DPU(Dojo Processing Unit)。DPU是一个可视化交互软件,可以随时根据要求调整规模,高效地处理和计算,进行数据建模、存储分配、优化布局、分区拓展等任务。
不久后,特斯拉即将开始Dojo超级计算机的首批组装,并从整个超级计算机到芯片、系统,进行更进一步的完善。
除了备受期待的神经网络学习与Dojo超级计算机,在活动末尾,马斯克在谈到AI发展方向时,还出乎所有人意料地抛出了“Tesla Bot”。Tesla Bot高1.72米,重56.6千克,脸上的屏幕可显示信息,拥有人类水平的双手,并有力反馈感应,以实现平衡和敏捷的动作。
马斯克表示,Tesla Bot将利用Dojo超级计算机的训练机制来改进功能,并补充道:“未来劳动力不会短缺,但体力劳动只是一种选择。Tesla Bot可以执行一些危险性、重复性、枯燥的任务。”Tesla Bot或将在明年推出首个原型机。
想象一下,如果特斯拉生产线的人类工人一半替换为机器人,Model3、Y会不会进一步降价,跌入20万以内区间?
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- TechWeb一周热点汇总:华为Mate 70定档11月26日,字节跳动上调年终激励
- 四部门:深入整治“信息茧房”问题,严禁利用算法实施大数据“杀熟”
- 张朝阳对话基普乔格:跑步像经营一家企业,每个细节要做到极致
- 英伟达CEO黄仁勋香港科技大学最新演讲:机器人时代即将到来
- 蔚来法务部回应收购谣言:公安机关已立案调查
- 阅文集团与大英图书馆达成三年合作,10部网文入藏大英图书馆
- 又10部网文入藏大英图书馆,《诡秘之主》《全职高手》《庆余年》在列
- 滴滴张博卸任CTO 未来将专注自动驾驶业务
- TechWeb微晚报:苹果开发全新Siri,尊界尺寸可能超越99.99%的轿车
- 毫末智行回应裁员:正常组织调整,比例很小
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。