如今,我们已经进入移动互联网时代,大数据扑面而来。对于京东来说,大数据到底都能够起到哪些作用?5月26日,老冀在贵阳大数据博览会上见到了京东大数据部副总经理邢志峰,也就是京东研发部门内部俗称的“邢捕头”,向他请教了一下京东大数据的一些问题。
邢捕头算是京东大数据的资深员工了,他在2009年就加入了京东,一直在京东数据部门。当时《武林外传》挺火的,同事们看他做事认真,于是给他起了个电视剧里面角色的外号。
(图:京东大数据部副总经理邢志峰)
分分合合的大数据路线
京东大数据说来话长,实际上,它经历了一个分分合合的过程。
2009年7月的时候,邢捕头的心情可没有现在轻松。那个时候,快速增长的业务带来了海量的数据需求,业务部门扔过来大量的数据,几乎天天到他那里来“讨账”。于是京东数据部在2009年底正式成立。
到了2010年下半年,数据部依照服务职能对象的不同拆分为两个团队,其中一个主要面向采销、市场等部门,另一个数据团队则为仓储、物流等部门提供服务。
巧合的是,这两支团队也选择了不同的技术路线。一个选择了基于开源的MySQL自建数据仓库,自主开发配套的数据调度生产、数据分析提取、数据知识管理、数据报表呈现及数据质量监控的产品体系,并建设相应的数据集市与业务部门联合推广使用。
另一个数据团队选择了购买ORACLE RAC小型机/ORACLE BIEE商业智能平台,数据处理效率也得到了明显提高。
但是随着京东业务的不断扩张和高速增长,商业软件的局限性就日益显露出来了,主要表现在两个方面:
一个是维护成本高,商业软件此后的每一次升级都要请原厂的专家上门,这个服务费可是相当的高。
另一个更重要的则是快速响应能力。电商行业变化非常快,几乎每天业务部门都要做一些策略调整,比如增加某些品类,砍掉另一些品类,而商业软件都是模块化的,并没有那么强的灵活性,响应速度根本跟不上业务的发展。实际上,我们看到一些使用了商业软件的电商在这个方面吃亏不小。
到了2012年年初,为了更好地应对业务的快速增长,京东数据部又合在了一起,并且确定了基于Hadoop的分布式开源技术架构,原来的SQL Server和ORACLE数据仓库均退出了历史舞台。在Hadoop的基础上,京东开发出了JDW企业级数据仓库,目前集群的总存储量已经达到了50PB以上,是名副其实的大数据。
更加真实有效的大数据
在贵阳大数据博览会上,出任京东集团高级副总裁及京东研发体系负责人的张晨表示:“京东全品类、全价值链的电商数据在行业内具有稀缺性,它使得京东大数据在数据、模型、技术、工具等多个层面高度的整合和统一,大大提升了大数据在整个集团内融合和利用的效率,促进大数据的深度价值挖掘。”
简单来讲,京东大数据的优势得益于京东电商业务的全价值链数据。由于京东的主要业务是自营式电商,而且要求端到端的流程控制,使得京东的大数据覆盖了电商的全部流程,从采购、库房、销售、配送到售后、客服,整个链条是完整的。
“数据不仅仅大才有价值,如果不完整或者只是局限于某个点的话,价值就小了。京东的数据很完整,量又很大,这个数据就很值钱。”邢捕头认为。
而且由于京东对商品交易过程实行严格的管控,在京东平台上进行代购和刷单的行为都是不允许的,这也使得京东的用户数据更加接近真实用户的真实需求。
有了真实有效的大数据,京东就可以做很多的事情,比如精准营销、用户画像、C2B定制,等等。
以老冀为例,比如老冀想在京东上买本《从零到一》,结果正好这本书脱销,老冀于是点击了一下“到货提醒”。过了几天,老冀收到一封邮件,告诉老冀这本书已经到货了,并且还推荐了《奇点临近》、《创业者的思考》,老冀发现这两本也是自己想要的书,于是照单全收。
不过,老冀感觉京东每次登陆的主页面还是非常庞杂,似乎不如美国亚马逊那么简洁、个性化和有针对性。邢捕头坦诚,目前京东在A/B 测试方面还不如亚马逊成熟。所谓A/B 测试,就是先建立一个测试页面,这个页面在呈现逻辑和内容上与原有页面有所不同,然后将这两个页面以随机的方式同时推送给所有浏览用户,接下来分别统计两个页面的用户转化率,即可了解到两种策略的优劣。还有一个也是跟中国网民的购物习惯相关:大部分美国网民购物非常直接,而中国网民则喜欢那种“逛”的感觉。
大数据还有个很大的作用,就是用户画像。前面老冀谈到京东有个很独特的优势,就是数据更加真实可靠。而且经过了十多年的发展,京东的商品品类也已经非常丰富,目前已经有接近1亿SKU。很多商品本身就会有用户特征,比如女士的胸罩和内衣,男士的刮胡刀,等等。京东根据这些购买行为给用户打上标签,直至勾画出一幅清晰的用户画像。
有了用户画像,京东就可以做很多事情了。举个例子,根据用户在下单前的浏览情况,京东就可以了解用户的购物性格是冲动型、理性型还是犹豫型。对于冲动型用户,京东直接推荐给Ta最畅销的同类商品,而理性型用户则推荐给Ta口碑最好的商品。
京东还将用户画像数据提供给网站智能机器人JIMI,使得JIMI能够快速理解用户意图、从而对用户进行个性化关怀,从而大幅度提升用户的满意度。
而随着2014年京东收购了腾讯的实物电商部门,并将其数据整合进来,京东大数据的准确性又得到了提升。此外,京东的大数据还能够与腾讯的QQ/微信大数据结合起来,从而开展更有针对性的营销活动。从过去一段时间双方的联合推广来看,大数据功不可没。
帮助业务部门决策
其实,大数据还能够做更多的事情。对于邢捕头所在的部门来说,最重要的还是帮助业务部门更好地决策。
比如目前市面上有那么多款手机,京东手机采销部门到底应该采购哪一款手机?就可以根据京东大数据参考决策。如今,京东更深入了一步,在2013年推出了JDPhone计划,与手机厂商一起打造用户喜欢的手机。
举个例子:京东大数据显示,近半年来在京东购买过两次以上手机的用户,其中34%都选择了更大屏幕,但是5.5寸是他们接受的极限,因此建议手机厂商选择4.8-5.5寸屏幕作为最优尺寸。最近这几年,正是基于大数据的威力,JDPhone计划先后与中兴、华为等手机制造企业合作,推出了目前市场上很多畅销的机型
“我们的数据能够帮助业务人员做决策和判断,能够利用很多统计方式展现报表,以更加形象、实时和统一的方式提供给他们,通过业务应用服务于我们的消费者。”邢捕头对于自己的工作感到非常自豪。
2011年11月,京东准备对快递包裹收费。那么,当用户的订单金额到了多少才能够不收费呢?为此,京东大数据部门模拟了一个场景,分别按照用户订单免运费下限为19元、29元到89元之后,对京东的整体毛利情况做了一个详细的测算,然后找到了比较合理的价格区间,将报告提交给了公司高层,对于配送费的合理制定起到了很好的辅助决策作用。
如今,对于京东高达上亿的SKU,单是补货就是个大问题,如果只是依靠人工补货根本就忙不过来。京东供应链研发团队自主开发了一套补货系统,项目上线之后,给图书部门的采购补货工作带来了极大的便利。面对超过百万而且不断增长的SKU,图书业务部门的采购人员并没有显著增加
此外,京东还将自己的大数据拿出来,与复旦大学联合推出了复旦-京东信息消费指数,包括消费者行为与信心指数、电子商务行业景气度指数、电子商务便利度指数三大子指数,共同构成了一个完善的指标体系,综合反映了当前信息经济消费情况,能够为政府政策、行业发展、消费者行为模式等提供重要的参考价值。这也是目前我国首个用于评估电子商务、“互联网+”等信息要素集聚程度以及绩效表现的综合性指数。
马上就要到618京东大促了,6月18日和19日两天,也是京东大数据部门最忙碌的两天,他们要收集这次大促全方面的数据,经过数据挖掘并整理之后提供给京东高层,为下一步的决策做参考。
由此可见,京东已经离不开大数据,而大数据也已经成为京东武器库中最重要的武器之一。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。