Zillow“炒房”失败,算法神话破灭了吗?

原标题:Zillow“炒房”失败,算法神话破灭了吗?

新冠时代,裁员、失业在全球范围内都是高频事件,我们似乎早就已经习惯了各种黑天鹅消息。不过美国地产平台Zillow在年底彻底关停iBuying业务,并将该业务约2000名员工全部裁掉的消息,还是在国内外掀起了波澜。

在很多人眼中,这是一次AI技术的大型“滑铁卢”。

从2006 年问世以来,Zillow就将技术作为自己的核心优势,独家上线的Zestimate功能,可以基于大数据来提供房屋售卖和出租价格的估值,在2011年的纳斯达克IPO文件中,这一技术能力被提及了61次,也让Zillow成为最受资本市场追捧的科技公司之一。

此次被彻底关停的数字炒房业务Zillow Offers,也依靠Zestimate算法,预测房屋在几个月后的价值,从卖家手中收来房子,然后Zillow进行装修维护后卖给下一家。这种商业模式,靠的就是准确预测房价,实现低买高卖。

炒房业务上线时,被一位Zillow高管吹捧为“令人兴奋的进步”,显然,Zillow失败了,大约面临5亿4千万左右的损失。

连带着,AI预测房价的神话似乎也破灭了。

有海外媒体认为,“Zillow was trying to use technology to outsmart the market, but in the end, the market won”(Zillow妄图用科技打败市场,最后却被市场所打败)。

报道AI好几年了,我见过各种对AI的吐槽,什么人工智障、算力怪兽、全靠人工、替代人类工作……很多都被时间证明是阶段性或可解的,智能化建设一直如火如荼。

但就像煤炭和石油曾经是世界上最有价值的资源,但它们也都有黑暗的一面,而AI也同样,有可能出错的地方。

这次Zillow算法翻车,也让我们不得不思考,当各行各业加速拥抱AI的时候,AI还有哪些做不到?

无算法,不炒房

首先有必要解释一下,为什么Zillow Offers这种依靠算法低买高卖的方式,在美国资本和房产市场能够成立。

对大多数中国人看来,收取交易佣金的“中介”也变相地增加了成本,“没有中间商赚差价”一直是许多数字平台的核心价值点。而Zillow Offers通过购入房产,装修后再次出售/出租,不也增加了买房人的成本吗?

这就要提到房产在线交易的iBuying模式。

在美国市场,房屋买卖中间的环节非常多,需要先找房产经纪、刊登广告、带人看房,后续修缮房屋、寻找装修工人等也是麻烦事儿。有人统计过,传统销售模式大约需要12道繁琐的步骤。

而iBuying模式下,卖家只需要在线填写一份表格,就可以实时得到一个平台算法预估的现金报价,签署iBuyer合同后一周内就能完成交易流程。报价可能会比自己卖低一点,但卖家可以很快拿到资金,并且不用花费大量精力去应付各种买家咨询和看房的麻烦,也省去了维修费用和时间成本。

对于平台方来说,如果房屋的价格是100万美元,那么可以收取10万美元的服务费(一般是10%)用于清洁、托管、维修升级,最后以120万美元的价格出售,相当于赚取了10万美元的服务费和20万美元的房价增值。

疫情发生之后,居家隔离和贷款利率降低,推动了租售房屋的需求高涨,许多城市的房价“一日千里”的速度暴涨,所以能够更快交易拿到钱去买另一套房子的人在增多,这也让Zillow Offers的前景看起来十分光明。

而天下武功,唯快不破,iBuying模式的竞争“护城河”,就在于更低的拿房价格,以及更快的出售速度,而Zillow几乎全都没有做到。

一方面,Zillow往往会给出高于同行的报价,有媒体统计过,Zillow的报价比竞争对手Opendoor、Offerpad都要高。此外,Zillow囤积了大量的房产,从2018年4月以来购买了27000套房屋,但截至2021年9月底仅售出了17000套,最近不得不将余下的数千套房屋“挥泪大甩卖”。

看起来,Zillow真是不怎么聪明,比咱们“温州炒房团”差远了。但仔细想想,Zillow的选择真的有什么大错误吗?

事实上,尽管Zillow炒房业务失败了,但iBuying模式却依然被看好。有咨询机构认为,到2025年,iBuyers在美国的总交易将占所有购房和售出房屋的3%-5%(目前不到2%)。一方面,年轻一代希望在郊区购买房屋,远程工作的持续推行,以及可预期的低利率趋势,这些都让房屋需求带来较大的变化。

其次,通过大数据和算法来预估房价,也并没有什么大问题。iBuying模式的平台几乎都是这么完成的,比如占比最高的Opendoor,就通过机器学习房屋照片来进行定价,并不断搜集有关公司的大量数据,不断训练智能定价系统——换句话说,和Zillow的方式一样。

(Opendoor的智能定价)

那么,Zillow到底是为什么失败的?原因真的如Zillow高管所说,是AI算法错误率太高吗?

锅是AI的,也不完全是

Zillow的失败,不仅让大众看到了平台“炒房”的操作,也暴露了使用AI来进行定价决策有多困难。

在Zillow的一份文件中曾提到,它们的Zestimates拥有超过50万个独特的估值模型,建立在超过7000万美国家庭、3.2TB的数据之上。

听起来并不差对不对,不然也不能吸引到精明的华尔街投资人。那么Zillow Offers为什么会失败呢?

不可否认,算法预测房价的错误率高,是一个全行业都面临的现实问题。

房价走势往往覆盖较长的时间周期、复杂的数据维度,而炒房又需要预测非常精准才能获利,这本身就是一个悖论。

比如说,很多影响房价的信息是系统很难捕捉或洞察到的。暂且不提“买家觉得从小长大的街区更有价值”这种小概率事件,房屋装修审美风格、户型设计是否科学等,都可能影响购房决策,而它们很难被量化评估,并且会随着流行趋势变动。比如系统可能知道某套房子一共有三间卧室,但它能知道房间的布局是否合理吗?疫情要求居家隔离之后,人们对房屋空间和位置的喜好也会发生变化,而这些转变没有被Zillow的AI模型快速捕捉并迭代。

为了提高算法的准确性,Zillow多年来都在举办公开的Zestimate数据科学竞赛,单项奖金就高达120万美元,而其中一个参赛者提到,一些隐藏问题,比如地基中的裂缝,该系统是无法预测的。

算法不是万能的,这一点虽然是现实,但可以说行业内大家都受到这一技术瓶颈的限制,Zillow就算做的不是最好,但也不差,这并不是它失败的终极理由。

事实上,为了弥补算法的缺陷,Zillow也雇用了一支由100多名定价分析师组成的团队,通过对比销售情况来校对算法预测的报价。

这下是双保险了吧?但技术再牛,员工再厉害,都抵不过决策者的“骚操作”。

由内部员工透露,Zillow为了在市场竞争中赶上对手的份额,加大了购买力度,甚至在算法预估和分析师报价的基础上,加价购买房屋,并且无视了员工对高价买入的担忧。

Zillow为加速购房成立了一个专项计划:“番茄酱计划”(Project Ketchup)。Ketchup恰好与Catch up同音,代表着想要追赶iBuyer头部公司Opendoor的野心。

比如凤凰城今年5月的房价中位数是35.1万美元,到9月上涨到了47.5万美元,其他公司已经开始降低价格和购买数量,而Zillow支付的价格仍比房屋中位价高出6.5万美元。

结果下半年美国房地产市场降温后,无法快速完成过户、装修、销售,直接导致了一串连锁反应。

如果房价接着涨,或许这会儿大家就得夸Zillow囤房囤得好、囤得妙,得到了开发商囤房惜售的精髓。

结果,Zillow虽然看到了疫情影响下购买热潮的到来,却没有预计到供应链和劳动力问题对ibuying业务的影响。因为ibuying模式下,平台都需要对房屋进行翻新维护,而建材和劳工的短缺,则让许多房子无法达到挂牌标准,给Zillow的资金链带来了巨大压力,不得不甩卖回血。

疫情固然是“黑天鹅”,但同样的市场情况下,模式一样的Opendoor和Offerpad,都没有出现暴雷。Opendoor 的第三季度报告显示,其收入还增长了91%。换句话说,因为供应链问题而遭受损失的只有Zillow一家。

对ibuying模式上下游产业链机制的审慎与把握不足,或许才是压倒Zillow offers的那根稻草。

从Zillow身上可以看到,算法的有限性固然是业务受创的原因,但绝不是本质的原因。公司管理与模式正常时,有效的算法分析能够带来巨大的竞争优势;而公司运转不够良性,那么再厉害的算法恐怕也无法挽狂澜于既倒。

更进一步,从Zillow的经验教训中,企业在应用AI提升业务时,有没有一些需要重点注意的地方呢?

上次强调的,还是在上次

其实,阻止落地AI、应用AI的潜在阻碍,多年来我们已经反复提过无数次。但时移事易,在人工智能成为主流的当下,大众对AI的认知变得越来越全面,涵盖了许多细分、垂直的业务场景(比如预测房价),当时看起来脑洞大开的洞察,今天已经变成了让许多企业管理者与IT负责人措手不及的现实问题。

所以,也是时候从提出问题,找到解决问题并提升AI业务指标的方法了。

目前看来,AI预测还是一个充满了神秘和难以理解的“黑盒子”,如何使用好这个工具, Zillow的得失其实是个有效的参考标本。

1.AI不能靠“独角兽”。换句话说,不要局限或盲目依靠AI算法或数据分析科学家,对于企业来说,了解业务问题的复杂性,具备实施能力的专业人员,能够帮助系统构建问题,在算法给出结果后进行兜底判断。用一位AI企业创始人的话来说,企业都渴望一个“独角兽”可以同时完成所有AI分析工作,“但独角兽并不存在”,成功的企业AI项目必须是多元化角色所共同完成的。如果Zillow能听取专业定价分析师的意见,或许不会翻车如此严重。

2.AI不能太沉重。市场变动越来越大,许多公司也变得越来越敏捷,像软件开发一样,算法模型的更新也必须变得更加敏捷,保持最新状态。试想一下,如果Zillow的算法能够快速感知到市场供需变化并迭代,也能及时减少损失。而对于很多企业来说,想要更敏捷灵活地应用AI,比起自主训练迭代,或许采用公有云厂商的AI能力会是更灵活的选择。

3.AI不能独自成立。企业管理者必须认识到,AI的引入将给管理流程、决策机制等都带来挑战,组织内部必须进行相应的架构、思维、战略转变,来配合算法落地并支撑业务。AI看似是技术性的工具,实际上更像是一种业务功能,需要多部门的适配,如果决策者像Zillow一样随意忽略算法预测,最后又甩锅给算法,AI当然是没法骂人的,不过官僚主义最终伤害的也不是AI,而是企业本身。

黑天鹅无处不在的时刻,AI不是一个捉摸不透的谜团,不是什么“打败市场”的神秘武器,而是和人类休戚与共、维持繁荣与发展的工具。而能不能用好它,最关键的还是靠人类本身。

祸不在颛臾,而在萧墙之内也。AI又能有什么坏心眼呢~

极客网企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2021-12-01
Zillow“炒房”失败,算法神话破灭了吗?
但就像煤炭和石油曾经是世界上最有价值的资源,但它们也都有黑暗的一面,而AI也同样,有可能出错的地方。

长按扫码 阅读全文