智能,服务,生态:华为调制的AIOps,味道有何不同?

原标题:智能,服务,生态:华为调制的AIOps,味道有何不同?

追踪AI技术这么长时间,我们亲眼见到了许许多多的职业,工作环境因AI而变得更好。

昔日在高空连续工作的吊车司机,变成了可以远程操作的“空调哥”“空调姐”;曾经风里来水里去的巡检工,工作强度因为智能监控系统而轻松了不少……

然而,还有一种隐形的重复类工作很容易被忽视,那就是IT运维。

可能在很多人眼里,运维人员只需要在系统宕机、电脑坏了的时候担任“救火队员”即可。但随着IT系统规模越来越大、网络复杂度越来越高,传统的运维工作正在变成了高强度且枯燥的工种。运维人员在日常巡检中需要重复上千次抄表,每天要面对并处理成百上千次告警通知……

据说每个运维人入职时的期待,就是喝着咖啡做运维,跷着二郎腿就把工作做好了。然而年复一年,尽管运维辅助工具也在迭代,但始终赶不上数字化进程快、企业业务变化大,别说“咖啡运维”了,晚上能少收到几个告警工单就谢天谢地了。那么,AI能为他们带来改变吗?

刚刚过去的华为全联接大会上,华为就为企业运维人斟上了一杯“咖啡”,发布了AIOps服务。

AIOps(智能运维)一直被看作是下一代运维模式,这杯由华为调制的运维“咖啡”,又是什么味道的呢?

品味一番会发现,前调是智能,与AI相结合的AIOps带来了颠覆传统运维的体验;中调是场景,智能技术与业务场景的有机结合,让AIOps服务品起来更加和谐丝滑;后调是生态,要能兼容各种网络协议、设备,才能让不同口味的运维人员都收获惊喜。

通过这杯咖啡,我们来一起品一品数字时代的运维之变。

前调:氤氲智能的香气

我们都知道,AI尤其是机器学习算法,非常适合处理重复性、预测型、大数据的工作,恰好指向了当前运维工作的核心挑战:

1.ICT网络不断迭代发展,系统日趋复杂,PB级海量数据成为常态,有的运营商甚至面临2/3/4/5G四世同堂的网络局面,运维对象越来越多,运维人员不得不忙于应付大量告警和重复工作,而无法将时间放在运维策略建构等更有创造力和价值的工作上;

2.新服务、新技术带来了更多的维护场景和要求,容器化、虚拟化、分布式服务、多云管理等等,让运维人员在故障定位、日常巡检等工作中身心俱疲,面对问题时往往需要花费很长时间来决策,要保证系统的高可用、高可靠、高效率十分困难;

3.万物互联、千行百业的数字化升级,带来了错综复杂的IT设施种类,从硬件到软件如果没有整合监控,运维工具各自孤立,缺少统一集中的监控管理机制,运维专家在统筹决策时也容易出现混淆,不得不处于时刻待命的“救火状态”。

因此, Gartner在2016年提出的AIOps概念,即 Artificial Intelligence for IT Operations,倡导将人工智能应用于运维领域。有以下好处:

第一,AI智能体能够从日常的运维大数据(日志、监控信息、应用信息等)中总结规律,根据当前的环境自动分析;

第二,AI算法会在特定场景下,第一时间发现指标异常,进行故障精准分析与定位,自动触发修复机制,将故障进行恢复,减轻运维人员的工作负担;

第三,故障修复之后可以自动复盘并沉淀为知识资产,进一步优化迭代算法,形成千人千面的智能运维工具。

由此,也就真正能将运维人员从重复性工作中解脱出来,让“咖啡运维”的梦想照进现实。

中调:深入场景的甘甜

听起来,AIOps简直是运维人员的明日之光。Gartner也曾预测,到2022年AIOps 的采用率将会达到 50%。然而现实中,落地速度却并不像预期中那样迅猛。是什么让运维人员“只闻其香,难尝其味”?一个词:开发。

AIOps离不开人工智能两大要素:数据与算法。一般来说,支撑业务的AIOps工具,需要结合企业自身的运维框架、策略,投入运维大数据,进行针对性的模型开发和训练,才能保证算法的精准度。

但现实很骨感,企业中具备AI专业知识的综合性运维人才十分稀缺,即便引进了相关人才,也需要花费大量时间来梳理多源异构的大数据,针对业务场景进行编码开发,耗时不说,最终的模型效果还不一定理想,这些客观问题都阻碍了AIOps在产业侧的落地应用。

因此在华为全联接大会上,华为正式发布AIOps服务,聚焦网络智能运维,降低AI开发门槛。此次发布的AIOps服务有三个特点:

第一,扎根场景,适配需求。此次发布的AIOps服务结合了华为30多年的网络运维和场景理解经验,覆盖MBB/FBB、园区网络、数据中心网络、IT应用四大领域,和故障预测、检测、诊断、识别等环节,异常识别与故障诊断准确率达90%,能够满足绝大多数企业的日常运维需求;

第二,简单易用,降低门槛。华为AIOps服务沉淀了10多个开箱即用的智能APP模板,用户只需配置数据源,即可启动APP运行,将AI应用的开发部署过程缩短到分钟级;预集成了20多个高质量的AI原子能力,覆盖预测、检测、诊断、识别等网络运维场景,只需要简单拖拽,系统就能自动完成节点间的数据衔接,自动推荐下个节点,不需要用户从组件库中反复筛选验证,大大降低了应用开发门槛。

第三,可视化定制,提升效率。华为AIOps服务还提供了80多个2D/3D可视化组件,开发人员很轻松就能DIY出一个包含趋势、报表、网络关系等元素的可视化大屏,让业务结果直观、快速地呈现出来,有效减少运维人员决策、处理的时间,并确保资产的整体管理和精细化运维,可以提升业务系统的SLA,为企业降本增效,让运维数据这一重要资产发挥出更大的价值。

说了这么多,大家一定很好奇:AIOps到底怎么用?我们可以看一个真实的运维案例,了解AIOps服务如何给企业和用户带来价值。

试想一下,如果一个用户刚刚办理了尊贵的5G套餐,却突然间上不了网,运营商会不会就此损失一个高端客户?随着核心网承载量越来越大,监控指标多,传统静态阈值检测存在漏报误报的问题,一旦出现故障没有及时排除,对用户体验影响极大。

去年7月10日,某供应商将DNS脚本的指向配置错误,影响了某运营商8个城市2000多5G用户数据业务。幸好借助华为核心网KPI异常检测APP,提前5小时发现了问题,并发送了告警短信,降低了业务损失,保证了5G高端用户的网上冲浪体验。

异常检测精度高,故障定位回复效率高,智能运维应用适配业务场景,变被动响应为主动运维……这正是华为AIOps服务的价值所在。

后调:扩散生态的温度

而更进一步,华为赋予了AIOps悠长的后调,即建构了值得长期品味的AI生态。

在本届华为全联接大会中,华为网络人工智能产品部AI模型与训练服务部部长王晶提到,“华为AIOps旨在降低ICT领域AI应用开发门槛,将AI技术带入运维预测、检测、诊断、识别、优化等每个环节,赋能合作伙伴创新,共同建设智能运维生态,实现商业成功”。

这杯甄给运维人的“咖啡”,为什么需要聚生态之力来打造?归根结底源于华为对运维行业的深度把脉:唯有众智共创,才能快速推动智能运维AIOps时代的到来。

运维市场前景广阔,根据艾瑞咨询的预测,2021年中国IT服务有望突破万亿元大关,其中IT运维市场规模将达2941.2亿元。这也就导致很多厂商看中了这块“蛋糕”,纷纷进入,行业创新和实践不断涌现。但跨厂家主流设备无法互通,多层次协同难以形成,最终影响的还是客户体验,从而延缓了智能运维的落地部署。要解决这一问题,就需要以开放心态实现共享,以生态模式促进共同获益,进而推动智能运维进入良性发展阶段。

所以我们注意到,华为AIOps服务另一个余韵悠长的操作就是:开放。

首先,向跨厂家设备自开放。华为AIOps服务实现了主流设备的自动对接,支持SFTP、Kafka、Rest等通用采集协议,支持华为30类网元、跨厂家100多种主流设备的自动对接,可以满足端管云的数据采集需求;

其次,向企业人才、合作伙伴开放。华为自身技术资源向全球企业、运维开发工程师、合作伙伴开放,利用华为的技术、AI原子能力等,可以低门槛、零代码地开发更多运维应用,构建自身的运维服务能力,开发独特的运维服务,生机勃勃的应用开发生态快速崛起,将为智能运维的工具创新、能力扩展,打下坚实基础。

今天,数字化转型是中国经济发展、产业升级的最强音,少了高质量、高效率的运维能力,数字化就犹如沙上聚塔,显得尤为脆弱。从这个角度看,运维人员也早已不再是边缘化的“救火队员”,而是网络安全稳健运行、系统性能最优化、组织生产力最大化的“神助攻”。

而华为打造的智能底座,正有力地托举着运维人的智能憧憬,让他们终于能够放心地饮下这杯香气四溢的“咖啡”。

极客网企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2021-09-29
智能,服务,生态:华为调制的AIOps,味道有何不同?
华为AIOps服务沉淀了10多个开箱即用的智能APP模板,用户只需配置数据源,即可启动APP运行,将AI应用的开发部署过程缩短到分钟级;预集成了20多个高质量的AI原子能力,覆盖预测、检测、诊断、识别

长按扫码 阅读全文