原标题:让智能模型“说人话”背后:AI可知论与不可知论的纠葛缠斗
现如今人类对于AI的应用,就好像带妈妈去外面的餐厅吃饭,妈妈们不光要吃,还总想弄明白这些菜是怎样做成的。就如同神经网络越是高效,我们就越好奇黑箱里究竟发生了什么。
一直以来我们对于AI可解释性的追求可以被分为两层,一是从技术角度探寻神经网络黑箱的运行机制;二是从社会角度将AI技术原理更多地解释给各个行业。
虽然计算机科学家们一直没有停止对神经网络黑箱突破的探索,但也有人曾经明确地表示过,追求可AI的可解释性并不是什么好主意。
去年年底,谷歌大脑负责人Geoff Hinton就曾在接受媒体采访时说过若干“AI不可解释”的理由。其中很重要的一点是,他认为大多数人也没法很好的解释自己做出一种决策的理由,如果强迫人类对自己的行为做出解释,结果很可能就是让人类说出违心的谎言。AI也是一样,也许强行在AI算法中加入可解释性,得出的结果很可能只是一种“针对于解释需求的答案”,并不能发挥出人们所期望的作用。他可以说是一位坚定的“AI不可知论”支持者。
让AI模型说人话
不过在几天前,佐治亚理工学院就推出了一种让AI用人类语言解释自己行为的模型。
整个模型的训练过程,建立在一款“小青蛙过马路”的古老游戏上。游戏中玩家要操控着小青蛙前后左右躲避来往车辆,成功到达马路对岸。
佐治亚理工学院先是收集了大量的人类样本,让人类实验员玩一遍游戏,然后再回溯整个游戏过程,解释出自己的每一步动作有哪些意图。例如向左走是想躲避开后方来车,向前跳跃是因为漂浮的荷叶刚好来到自己面前。
这样一来,可以将自然语言与游戏控制结合在一起建立映射。将这一模型迁移到AI的训练中,最终结果是AI在每进行一步动作时,都会用自然语言解释出自己的意图。
实验者可以再根据四个维度对AI的行为和解释进行评分,这四个维度分别是“信任(认为AI的这一步行动是正确的)”“人性化(认为这是人类采取的行动)”“理由充分(语言解释和行为动作有相关性)”“可理解性(能看懂所给出的自然语言解释)”。
由此以来,就可以对AI的游戏能力和自我解释能力进行共同的训练。
佐治亚理工学院所研发的这一模型,为AI的可解释性带来不少全新角度的突破。
当AI进行错误决策时,我们可以清晰地看到AI究竟错在哪了。比如在游戏中小青蛙被路过的汽车撞死导致游戏失败,通过自然语言解释,我们可以看到可能是AI没有“想到”要躲避汽车而导致失败,还是已经“想到”了,却因想法和行为没能成功匹配而导致失败。在后期进行参数调整时可以更加有的放矢,明确地找到问题所在。
更重要的是,这一过程完全是由人类的自然语言所表达的,普通人也能看到并理解问题发生的整个过程。技术的可解释权不再受信息科技知识基础所限制,甚至可以让更多人参与到AI训练的过程中来。
AI可知论,是在开技术的倒车吗?
但“小青蛙模型”并不能解决Geoff Hinton提到的“AI不可知论”的很多问题。
首先,让人类描述自身行为,然后再将语言和行为建立对应关系的玩法适用度并不高。
在小青蛙过马路这样简单的游戏中,人类可以清晰明了地解释自己行为。但换个场景,很多时候我们就像Geoff Hinton所说的,自己也说不清自己做出决策的原因。尤其在一些场景,例如行车时是撞到马路上的动物还是撞到其他车辆,人们自身的选择常常陷入道德困境不能统一,和AI的决策模式有着天然的差异,就无法形成语言解释和行为之间的映射。
另一点则是,让AI“自我解释”这种行为,投入和产出比究竟如何?
我们知道自然语言处理是AI领域中一块相当难啃的硬骨头,如果“AI说人话”这种模式成为标配,结果恐怕就是让所有领域的AI模型都要进行相关的训练。也就是说,未来一家做智能客服产品的企业,为了AI的可解释性,需要招聘NLP领域人才;但未来一家人脸识别产品的企业,为了AI的可解释性,同样也需要招聘NLP领域人才……NLP专业学子或成最大赢家。如此为AI产业带来的巨大成本,又将怎样被覆盖呢?
世界在等待AI+X
在Geoff Hinton发表过那番“AI不可知论”后,有不少社会学专家进行了相关反驳。其中剑桥智能未来中心的研究员就提出,AI在事物效率上的提升和对于社会的影响,本来就不能分开讨论,Geoff Hinton这样的科学家,如果认为自己脱离了社会语境和政策语境,那么很可能在研究过程的一开始就走错了方向。
其实AI的可知论和不可知论之间,最核心的问题就是“AI出现了问题该怎么办?”
不可知论者认为,当AI出现了问题,我们就应该像算法训练过程一样,在发现问题后立刻进行针对性的训练和矫正。
但可知论者认为,如果我们等到AI在现实场景中出现问题再进行改善,一切就已经晚了。当前的要务是让更多社会角色参与到AI的研发过程中来,在广泛的现实应用之间就能够从多种角度发现问题。
正因如此,才会出现佐治亚理工学院这种“让AI说人话”的项目出现。而在AI学会说人话之前,AI与人之间、AI专家与其他专家之间,仍然会呈现出严重的沟通断层。在相当长的一段时间内,AI+X的跨领域人才,都将炙手可热。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 消息称塔塔集团将收购和硕印度iPhone代工厂60%股份 并接管日常运营
- 苹果揭秘自研芯片成功之道:领先技术与深度整合是关键
- 英伟达新一代Blackwell GPU面临过热挑战,交付延期引发市场关注
- 马斯克能否成为 AI 部部长?硅谷与白宫的联系日益紧密
- 余承东:Mate70将在26号发布,意外泄露引发关注
- 无人机“黑科技”亮相航展:全球首台低空重力测量系统引关注
- 赛力斯发布声明:未与任何伙伴联合开展人形机器人合作
- 赛力斯触及涨停,汽车整车股盘初强势拉升
- 特斯拉首次聘请品牌大使:韩国奥运射击选手金艺智
- 华为研发中心入驻上海青浦致小镇房租大涨,带动周边租房市场热潮
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。