原标题:超越人类的多任务学习算法,将给AI带来什么?
过去十几年,人类可以说是在机器智能面前节节退败,屡败屡战。而多任务处理(multi-tasking),几乎是为数不多可以让我们“天生骄傲”的能力了。
比如,人可以同时打开8个网站、3份文档和一个Facebook,即使正在专心处理其中一件事,只要突然收到一条回复或更新提醒,也能够快速安排的明明白白。
对机器而言,要在同一时间完成这样的任务显然有点难。因此,多任务处理一直被视作是人类所独有的的技能点。
然而,这个优势似乎也快要失守了。
Deepmind一项最新的研究成果显示,借助其开发的PopArt方法来训练深度学习引擎,能够培养出可进行多任务处理的智能体,并且在实际的表现中超越了人类!
让机器“一心多用”的PopArt,究竟是如何工作的?
关于多任务学习的研究已经持续了大概20年之久,尽管一直没能像单任务学习(如AlphaGo)那样做出什么夺人眼球的成果,但显然更符合我们对“机器模拟人脑”的想象。
毕竟在现实生活中,各种“学习任务”之间都有着千丝万缕的联系,比如当人在玩电子游戏时,图像识别、任务理解、执行操作并追求收益最大化,这些都可以在瞬间完成的操作,并且在任何一个游戏中都可以如法炮制,而机器目前只能通过分解成单个任务去学习并处理。
怎样指导机器在同一时间完成多个复杂任务,Deepmind提出了一个新的方法“PopArt”,据说可以让机器在多任务处理上的成绩超越人类。
如名字所示,PopArt(Preserving Outputs Precisely while Adaptively Rescaling Targets),即在自适应重新缩放目标的同时精确保留原有输出。
有人可能会说,这句话里每个汉字我都认识,但凑在一起竟然完全不知道说的是啥?
不要方,我们今天就来“庖丁解牛”,告诉大家这个能够让机器“一心多用”的PopArt,究竟是何方神圣?
简单来说,PopArt的工作机制就是在机器对不同任务的学习数据进行加权之前,先对数据目标进行自动的“归一化”调整,再将其转换成原始数据输出给机器。
这一做法有两个好处:
一是让机器对不同奖励大小和频率的多个任务进行更稳健、一致的学习。
对于机器而言,多任务学习比单一任务学习更困难的最主要原因就是,多任务学习必须要将有限的资源分配给多个任务目标,但常规算法对不同任务设置的权重也有所不同。这就导致机器智能体会根据任务回报的多寡来选择执行哪些任务。
举个例子,同样是A游戏,机器在处理《pong》(一款乒乓球游戏)时只能得到-1、0或+1的奖励,而处理《吃豆人小姐》游戏时,则可以获得上千个积分,机器自然会更专注于执行后者。
即使开发者将单个奖励设置成一样的,随着不同游戏奖励频率的不同,差距还是会越来越大,依然会影响机器的判断。
结果就是,这个智能体会在处理某些任务上表现越来越好,但在其他任务上却越来越力不从心。
但PopArt可以很好地解决这个机器“偏心”的问题。
DeepMind将PopArt应用在自己最常用的深度强化学习智能体IMPALA上,让它同时处理57个Atari经典游戏,结果令人震惊——
应用了PopArt的IMPALA,不仅分数远远高于原始IMPALA的表现,甚至超越了人类的成绩!
下图中可以看到,修正游戏数据权重后的IMPALA(蓝色)性能表现接近于0%,与PopArt-IMPALA中位数101%的华丽数据形成了鲜明对比。
简单来说,就是PopArt自适应调整了每个游戏中奖励分支的大小,让机器认为不同任务带给自己的奖励是相同的,拥有同等的学习价值,因此,尽管这57个游戏有着巨量的环境、不一样的动态和完全不同的奖励机制,但机器都能够对它们“一视同仁”。
据我们所知,这还是当前单个智能体首次超越人类在多任务处理上的表现。
PopArt的第二重作用,则是能够有效增加机器学习智能体的数据效率,降低训练成本。
Deepmind发现,PopArt-IMPALA与像素控制技术相结合,只需要不到十分之一的数据量,就能达到原来的训练效果,这使其数据效率大幅提升。
因此,PopArt-IMPALA在大型多任务训练任务中,不仅比专家智能体DQN性能更高,而且更加便宜。
如果将训练任务放到云端,PopArt-IMPALA的性能只用了2.5天就超过了DQN,GPU占用空间更小,直接促使训练成本大幅降低。
Deepmind和OpenAI,技术大佬为何都对“多任务学习”情有独钟?
除了PopArt,今年早期,Deepmind还提出了另一种用于多任务训练的新方法——Distral,通过捕捉不同任务之间的共同行为或特征,让机器算法可以在被限制的条件下实现任务共享,从而进行同步强化学习。
和Deepmind一样跟“多任务学习”死磕的还有OpenAI,则是利用迭代扩增方法,不给机器学习模型提供完整的标注数据,而是将每一项任务分解成小的子任务,再为子任务提供训练信号,训练AI去完成复杂任务。
此外,MIT、Apple等顶尖技术玩家都在捣鼓这项技术,然而如果你把这当做一个技术领域的“荣誉保卫战”或者论文制造机,那就大错特错了。
随着AI的泛在化越来越强,有越来越多的领域都亟待“多任务学习”能力来提供新的解决方案。
这意味着,人类不需要针对每一项任务都从头开始训练一个全新的智能体,而是可以构建一个通用的智能体,来支持多个应用之间的协同工作。
比如小到一台电视,很多AI电视都整合了众多功能,比如观看视频、天气预报、事务提醒、网络购物等等,如何在既不影响用户看视频,又能够用语音唤醒其他功能?这就要依靠多任务并行处理。换句话说,不具备多任务学习能力的AI电视,有的只是一个“假脑子”。
大到一个城市。在众多关于智慧城市的假想中,都少不了这样一个场面:城市大脑将人、车、路数据都接入系统,生成一个交通实时大试图,并以此完成交通系统的智能调度和管理,治疗“交通病”。这意味着,城市大脑需要进行摄像头识别、城市空间布局和设施配置、事件预警、政务服务等多个系统的学习,能够发掘出这些子系统之间的关系,又能区分这些任务之间的差别。缺了任何一环,都有可能导致这个城市大脑做出“奇葩”的决策。
当然,对于研究者来说,在用每一点进步无限逼近人类心智的“珠穆朗玛峰”。但对产业而言,任何新技术的落地都从来容不得一丝任性,因为每一颗种子都在等待丰收。
为了满足这个前提,就意味着所采取的方法不能以无限制地增加GPU容量和训练强度为代价。因为没有企业或者机构愿意以一种不计成本的方式上马AI,即便这个AI能够处理多线程任务,那还不如“单任务AI+人工”来的更加现实。
目前看来,成本更低的PopArt大有可为。
说了这么多,回到最开始的问题,AI的多任务处理能力真的超越人类了吗?
从苛刻的实验室数字角度讲,是的。但从广泛定义的智慧角度看,机器的每一点进步都还依赖于不断模拟和接近人脑的水平,距离否定人类本身的价值,还早着呢。
目前看来,处理多任务的学习能力更大的作用,还是提升AI在产业应用上的工程能力,用更高的智能为生活带来便利。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。