7月17日,有人工智能“世界杯”之称的ImageNet大规模视觉识别挑战赛(ILSVRC-2017)正式落幕。在本届大赛中,360人工智能团队最终夺得冠军,并且刷新了此前谷歌、微软、牛津大学等机构保持数年的世界纪录。
ImageNet大规模视觉识别挑战赛被誉为计算机视觉乃至整个人工智能发展史上的里程碑式的赛事。本届比赛共吸引了来自中美英等7个国家的25支顶尖人工智能团队参赛。赛事共包括物体定位(识别)、物体检测、视频物体检测三大类任务。最终,由360人工智能研究院与新加坡国立大学(NUS)组成的团队在“物体定位”任务的两个场景竞赛中均获得第一,同时在所有任务和场景中均取得了全球前三的骄人战绩。
360人工智能研究院院长颜水成表示:“很高兴能够在ImageNet上取得佳绩,这也反映了360人工智能技术,特别是在视觉识别方面的领先实力。360非常重视人工智能在垂直领域的发展,并将人工智能技术积极应用到各类产品中。当下人工智能的发展不能脱离具体业务,需要在垂直领域去解决具体的问题,能落地的人工智能才是真正的人工智能。”
图1:使用训练数据进行分类+定位的模型训练
物体定位(识别)、物体检测、视频物体检测都是计算机视觉的核心领域,对于人工智能的发展意义重大,有广阔的应用前景,比如人脸识别、无人驾驶、智能机器人等。在本届赛事中,“物体定位”任务共包括两大场景,即“使用训练数据进行训练”,与“使用额外训练数据进行训练”。
在上述任务中,360与NUS团队合作提出的“DPN 双通道网络+基本聚合”深度学习模型均取得了最低的定位错误率,分别为0.062263和0.061941。值得一提的是,谷歌、微软、牛津大学等一直在此项任务中保持世界领先地位。此次,该项纪录最终被360与NUS团队成功改写。
图2:使用额外训练数据进行分类+定位模型的训练
计算机视觉识别是人工智能领域的经典命题,长久以来一直受到学术界和产业界的广泛关注。ImageNet不但是计算机视觉发展的重要推动者,也是深度学习热潮的关键驱动力之一。从 2010年以来,ImageNet每年都会举办一次全球性竞赛,即ImageNet 大规模视觉识别挑战赛。来自全球各国的顶级人工智能团队会在赛事中相互较量,比拼对物体和场景进行分类和检测的能力。这些团队既包括谷歌、微软、Facebook等大型互联网公司,也包括伯克利、牛津大学等世界顶级名校。整个赛事也成为了各团队、巨头展示实力的竞技场。
任何成绩的取得都不是一蹴而就的,而是来自于长期的积累。颜水成表示,一直以来,360人工智能研究院在计算机视觉领域持续投入研发。在长时间的研究工作中,打造了一支实力强大的人工智能团队,对于计算机视觉领域有深刻的理解。
安全与智能是360当前两大重点。360人工智能研究院立足于世界领先的深度学习研发能力,发力视觉、语音、语义和大数据四个方向,向360相关业务部门提供技术输出,并完成人工智能相关方向的原始技术积累和前沿探索。
目前,研究院的人工智能技术已经广泛应用于360的全系列产品中,包括直播、智能硬件、搜索和信息流等业务。未来,研究院将会推动360在人工智能方面的技术实现突破性进展。其中,视觉技术将进一步提升,优化识别物体、行为等,并拓展到SLAM领域;语音分析将增强合成真实感,提高识别准确度,逐步建立基于NLP语义的对话系统;大数据技术的提高将带动广告、精准推荐等。
万能的大熊
微博2015年科技,电商十大最具影响力双料大V,2016年电商十大最有影响力大V
公关品牌专家:曾负责360手机助手、360手机游戏、360随身wifi、360儿童手表、360行车记录仪的品牌营销,均为行业第一品牌。
畅销书作者:中信出版社合作出版畅销书《格局逆袭》,销售近10万册。
微营销第一社群大熊会创始人:2013年创建大熊会,位列中国社群影响力排行榜前五,是国内最大的致力于研究和引领微营销发展潮流的社会化营销社群组织,成员已超七千人。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 美媒聚焦比亚迪“副业”:电子代工助力苹果,下个大计划瞄准AI机器人
- 微信零钱通新政策:银行卡转入资金提现免手续费引热议
- 消息称塔塔集团将收购和硕印度iPhone代工厂60%股份 并接管日常运营
- 苹果揭秘自研芯片成功之道:领先技术与深度整合是关键
- 英伟达新一代Blackwell GPU面临过热挑战,交付延期引发市场关注
- 马斯克能否成为 AI 部部长?硅谷与白宫的联系日益紧密
- 余承东:Mate70将在26号发布,意外泄露引发关注
- 无人机“黑科技”亮相航展:全球首台低空重力测量系统引关注
- 赛力斯发布声明:未与任何伙伴联合开展人形机器人合作
- 赛力斯触及涨停,汽车整车股盘初强势拉升
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。