文|亿欧网
3月6日讯,完成了对C端市场的瓜分之后,BAT等互联网巨头们还是瞄向了B端市场。
在2016年及之前,BAT、网易、京东等互联网巨头们已经在云计算、人工智能等领域推出了诸多针对企业级市场的服务,从如今的趋势来看,被畅谈许久的大数据或将是BAT们争夺的又一块价值洼地。
日前,百度云传出消息为民生银行提供信贷企业的风险管理和预警的云服务。在寻找大数据布局切口的问题上,风控和银行成为BAT们的共同选择。
风控是银行业的七寸,也是大数据的练武场顾名思义,风控即风险控制,通过建模的方法对借款人进行风险控制和风险提示,消灭或减少风险事件发生的各种可能性,或减少风险事件发生时造成的损失。
现在的商业银行在本质上属于经营风险的特殊企业,通过承担风险,转化风险,并将风险植入金融产品和服务中再加工风险。在国内外商业银行的发展史中,因风险管理不当、资产质量低下而导致倒闭、被政府接管的不乏其例。如何有效的管理风险、规避风险成为商业银行生存与发展的灵魂。
银监会在去年7月份发布的《中国银行业信息科技“十三五”发展规划监管指导意见》成为大数据风控加速落地的催化剂,比如说在服务和应用层面强调基于大数据的营销、风控应用的推广。
动作敏锐的互联网金融早早完成了大数据风控的布局,看起来有些传统的银行业在节奏上似乎有些迟缓。
对于线上的纯数据和信用类贷款平台而言,引入大数据风控产品并没有太多门槛。对于商业银行却不然,尤其是中小银行,对大数据风控技术的应用尚不成熟,其风控模式更多关注的是静态的风险预判,这和中小银行科技水平和风控能力相对较低、数据信息的数量和质量存在缺陷等不无关系。
一般来说,大数据风控有着三个核心要素,即风控模型、场景和资金。商业银行仍然拥有着低成本资金优势,在线下场景也有着长期客户积累,大数据和海量风控因子恰恰是很多商业银行所欠缺的。
反观BAT等互联网巨头,在海量数据、金融云、用户画像、信用体系等方面有着先天的优势,特别是在银行逐渐实现业务电子化、金融监管收紧的情况下,BAT与商业银行在大数据风控方面的合作似乎是水到渠成的。
背靠大数据金库的BAT,如何开局?
BAT在大数据风控方面有着相似的逻辑,依靠自身积累的大数据体系,利用技术打造风控能力,再将这种能力开放给银行等金融客户。相比于市场上很多纸上谈兵的风控模型,BAT的优势在于相继搭建了已经应用于实战的风控模型,而各家在做法上又有很多细节上的差别。
阿里:蚂蚁金服的CTU智能风控大脑。所谓的CTU智能风控大脑,主要通过用户行为、位置、设备信息以及关系链来判断账户的可信性,然后预估资金、个人隐私及相关数据的风险性。判断依据包括用户电商消费记录、旅游消费记录等作为评估其信用的依据,此外利用梯度提升决策树、随机森林、神经网络、分群调整技术、增量学习技术等在内的机器学习算法产生的芝麻信用,也被纳入风控模型之中。此外,支付宝不遗余力的布局社交、芝麻信用打通微博等动作,可以看出阿里试图进一步挖掘社交数据来完善风控体系。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 万事达卡推出反欺诈AI模型 金融科技拥抱生成式AI
- OpenAI创始人的世界币悬了?高调收集虹膜数据引来欧洲监管调查
- 华为孟晚舟最新演讲:长风万里鹏正举,勇立潮头智为先
- 华为全球智慧金融峰会2023在上海开幕 携手共建数智金融未来
- 移动支付发展超预期:2022年交易额1.3万亿美元 注册账户16亿
- 定位“敏捷的财务收支管理平台”,合思品牌升级发布会上释放了哪些信号?
- 分贝通商旅+费控+支付一体化战略发布,一个平台管理企业所有费用支出
- IMF经济学家:加密资产背后的技术可以改善支付,增进公益
- 2022年加密货币“杀猪盘”涉案金额超20亿美元 英国银行业祭出限额措施
- 北银消费金融公司【远离各类不良校园贷】风险提示
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。