Meta发布Megabyte AI模型:训练速度更快

5月31日消息,近日 Meta 团队开发了一款名为 Megabyte 的 AI 模型以抗衡 Transformer,据称解决了后者所面临的问题,并且在速度上提升了 40%。

目前 Transformer 在自然语言处理等领域非常流行,但由于其序列数据的处理方式是逐步进行的,无法并行化处理,因此训练速度较慢; 难以处理长序列,因为其在反向传播过程中,梯度很容易消失或爆炸;此外,由于需要在每一步保留历史信息,内存消耗较大。

而 Megabyte 模型将输入和输出序列划分为 patch,而不是单个的 token。这种架构使得对大多数任务而言字节级别的预测相对容易,例如根据前几个字符预测完成的单词等。

这意味着在大型网络中可以精简字符以提升效率,并且内部预测可以使用更小的模型进行。Megabyte 模型的这种方法解决了当今 AI 模型所面临的训练速度、可靠性及硬件占用比挑战。

此外,在计算效率方面,相比于等大的 Transformer,Megabyte 模型在固定模型大小和序列长度范围内使用更少的 token。因此可以在相同的计算成本下训练内容更丰富、体积更大、性能更好的模型。

极客网企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2023-05-31
Meta发布Megabyte AI模型:训练速度更快
使用更少的 token。

长按扫码 阅读全文