10月17日消息(邵忱)近日,腾讯科技(深圳)有限公司申请的“面部鉴伪模型的训练方法、装置、设备及存储介质”专利公布。
专利说明书称,随着人工智能技术的发展,其在面部(即脸部)鉴伪领域的研究和应用也越来越多。目前,基于深度学习的面部鉴伪模型,大多依赖于带有标签信息的伪面部图像进行监督式训练,然而,在实际应用场景中,带有标签信息的伪面部图像有限,基于有限的伪面部图像训练得到的面部鉴伪模型的鉴伪准确性不高。
本申请公开了一种面部鉴伪模型的训练方法、装置、设备及存储介质,涉及人工智能技术领域。所述方法包括:
1.获取伪面部图像和真面部图像,伪面部图像的面部姿态与真面部图像的面部姿态之间的差异度小于或等于门限值;
2.基于伪面部图像对应的梯度信息,对伪面部图像和真面部图像进行融合,得到融合面部图像;
3.基于融合面部图像对应的鉴伪结果,对面部鉴伪模型进行训练。
据悉,专利摘要称,本申请实施例可应用于人工智能、智慧交通、辅助驾驶等场景,本申请能够通过在生成融合面部图像的同时,确定融合面部图像对应的标签数据,进而基于融合面部图像和标签数据,实现模型的自监督学习,而不受限于样本的稀少,从而提高模型的鉴伪准确性。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。