乳房X光照相技术能够降低乳腺癌死亡率是一个公认的事实。与替代筛查相关的假阳性高召回率加快了IBM、麻省理工学院计算机科学与人工智能实验室等机构对人工智能驱动系统的开发。但它们并不完美,因为与更多最近的测试相比,大多数模型只进行过一次单一的筛选测试。
这一缺陷促使纽约大学数据科学中心和放射学系的一组研究人员提出了一个机器学习框架,即筛查先前检查时生成的不同种类乳房X光照片,利用先前的检查结果做出诊断。他们说,在初步测试中,它降低了基线(基线就是被用为对比模型表现参考点的简单模型。基线帮助模型开发者量化模型在特定问题上的预期表现)的错误率,并在预测筛查人群的恶性肿瘤时,达到了0.8664的曲线下面积(在所有分类阈值下的性能指标,即预测的准确率)。
合著者写道:“放射科医生经常将目前的乳房X光照片与之前的照片进行比较,以便做出更明智的诊断。例如,如果一个可疑的区域随着时间的推移变得越来越大或密度越来越大,放射科医生就会更加确信它是恶性的。相反,如果一个可疑的区域没有增长,那么它可能是良性的。”
该团队在纽约大学开源乳腺癌筛查数据集上训练了一组机器学习模型,每组筛查中至少包含一张图像,对应于乳房X光摄影筛查中常用的四种视图(右颅尾侧、左颅尾侧、右中外侧斜肌和左中外侧斜肌)。他们使用了四种二元标签来表示左乳或右乳有无良、恶性的发现,并且只考虑了包括患者在内的数据集的子集,而这些数据集之前的检查数据都是可获得的。
实验所收集的数据库中包含了来自43013名患者的127451份检查,其中有2519份至少进行了一次活体组织切片检查。
该团队根据这些数据训练了一系列机器学习模型,然后仅使用训练数据集的一部分来比较它们的性能。他们注意到,与良性预测的基线相比,其效果并没有明显的改善,他们将其归因于算法倾向于关注扫描区域的显著变化。(而良性的改变并不明显。)但他们发现,其中一个模型——AlignLocalCompare——对恶性肿瘤的发现表现出明显的改善,预测肿瘤发生的可能性为0.97,而基线预测仅为0.73。
AD:还在为资金紧张烦恼吗?猎云银企贷,全面覆盖京津冀地区主流银行及信托、担保公司,帮您细致梳理企业融资问题,统筹规划融资思路,合理撬动更大杠杆。填写只需两分钟,剩下交给我们!详情咨询微信:zhangbiner870616 (来源:猎云网)
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 特斯拉CEO马斯克身家暴涨,稳居全球首富宝座
- 阿里巴巴拟发行 26.5 亿美元和 170 亿人民币债券
- 腾讯音乐Q3持续稳健增长:总收入70.2亿元,付费用户数1.19亿
- 苹果Q4营收949亿美元同比增6%,在华营收微降
- 三星电子Q3营收79万亿韩元,营业利润受一次性成本影响下滑
- 赛力斯已向华为支付23亿,购买引望10%股权
- 格力电器三季度营收同比降超15%,净利润逆势增长
- 合合信息2024年前三季度业绩稳健:营收增长超21%,净利润增长超11%
- 台积电四季度营收有望再攀高峰,预计超260亿美元刷新纪录
- 韩国三星电子决定退出LED业务,市值蒸发超4600亿元
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。