百度国际旗下智能广告平台MediaGo近日宣布,对其深度学习模型进行全面升级。升级后的模型可以准确判断流量质量,对广告版位实现智能竞价,并在营销漏斗的每一步实现精准预测,帮助广告主实现最大化投资回报率(ROI)。
MediaGo DSP基于深度学习技术构建智能广告引擎,采用参数规模10亿+的深度神经网络技术,每秒处理超过700万次广告请求,实时评估广告效果并制定智能竞价策略。
近年来,广告行业中普遍存在着低质流量泛滥的问题,难以促成最终转化等问题。为了解决行业常见难题,MediaGo有针对性地对深度学习模型进行训练,推出五大模型,覆盖营销转化全链路:
五大深度学习模型
1. 流量价值预估模型:该模型可以精准预估流量价值,一方面有效避免机器人流量、作弊流量等无效流量(IVT)对广告主利益的威胁,将IVT比例大幅降低至行业均值的10%以内;另一方面准确判断流量价值,淘汰掉效果较差的低质流量,仅对价值最高的流量出价,从而提升投放效果,保证广告主利益。
2. 注意力、兴趣、意图预测模型:基于媒体数据和全球营销历史数据,从吸引用户注意,到引起用户兴趣,再到最终完成转化,在营销漏斗的每一步实现实时预测,一方面准确预估广告版位的曝光效率,将广告有效曝光率平均提高20%,另一方面准确判断用户的兴趣和转化意图,帮助广告主争取更有可能点击和转化的用户,将广告点击率(CTR)平均提高15%,转化率(CVR)平均提高40%。
3. 竞价策略模型(SmartBid):MediaGo智能竞价产品SmartBid根据市场动态和广告效果自动调整出价,支持目标单次行动成本(TCPA)和最大转化(Max CV)两种模式,以满足不同广告目标需求。数据显示,MediaGo平台上使用SmartBid的广告活动ROAS平均提高了35%。
"MediaGo DSP 致力于用深度学习技术实现广告主的ROI最大化。" 百度国际MediaGo负责人潘锦锋表示,"我们相信,通过不断探索深度学习模型的可能性,不仅可以帮助到MediaGo的广告主,更可以使我们的合作伙伴乃至整个营销行业从中获益。"
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )