UCloud优刻得发布两款AI新品,助力用户打通视觉算法到场景应用关键环节

近日,UCloud优刻得发布自研的AI模型工厂和AI边缘盒子(UBoxAI)两款产品,通过用户可自定义算法的AI平台,以及内置多种算法、软硬件结合的AI边缘设备,打造全国产化的、云边端协同的平台型AI产品,赋能用户在多种场景下的视觉结构化AI能力,助力用户打通从AI算法到场景应用的关键环节。

UAI模型工厂 小白也能定制AI模型

UCloud AI模型工厂(Algorithm Model Factory,以下简称“UAI模型工厂”)提供从数据采集、标注、模型训练、部署的一站式AI开发能力,帮助用户实现无门槛的算法生产,快速创建标注及训练任务,测试发布,管理AI模型的全生命周期。为各行业用户提供开放的AI服务,解决AI开发门槛高的难题。

UAI模型工厂具有以下特性:

●零门槛:小白也可根据指南快速上手,一站式自动化训练。

●低成本:多人标注效率提升,支持多种数据格式。

●团队协作:支持团队协作模式,主账号同一项目下可查看公共数据集。

●数据安全:严格把控数据生产的每一环节,以保证安全合规,保护客户数据隐私。

UAI模型工厂主要针对图像进行AI分析,实现图像中目标的检测定位与分类,适用于安全生产,工业质检,安防监控等场景。平台的快速入门操作流程如下:

●创建数据集:数据集统一管理,实现对数据的隔离与保护

●上传标注文件:支持根据算法模型准备含一个或多个目标物体的图片zip包上传

●创建项目:单个客户可对多项目的并行管理

●创建任务:多个项目可对应多个数据以及多个任务,应对复杂场景

●给任务添加标签:数据标签帮助标注出图片中的目标,为模型训练做数据准备

●标注数据:可对样本进行通用检测、分割、分类三种算法类型的标注,操作简单有趣,支持多人协助标注

比如,比如通用检测模型的图片上传,要求首先确认要识别的目标物体,并上传不少于100张含有这些目标物体的图片,样本越多,后期模型的效果越显著。

用户还可以创建数据标签,并标注数据。标签可以为目标名称,比如“垃圾桶”、“安全帽”、“电瓶车”等;标签也可以为物体在场景中的状态,比如“合格”、“不合格”等。

UCloud AI模型工厂后期将陆续开放模型训练能力、支持UCloud优刻得智能AI边缘盒子、GPU一体机等多种交付形式。通过算法和终端的云边协同,可以让算法更加匹配用户需求,更快速的根据用户需求进行迭代。

AI边缘盒子,内置多种实用场景算法

UCloud优刻得智能AI边缘盒子(UBoxAI)EB004A,是一款基于深度学习技术的智能边缘计算节点设备,采用国产RK3399六核64位2.0GHz处理器,具有小体型,高频率,高稳定性等特点。可接入IPC(网络摄像机)等前端设备,实现对传统监控设备的智能化改造。支持对多种行人、车辆、物品的视频结构化分析,可提供多算法模型融合、远程升级、智能运维、事件分析及报警联动服务,广泛应用于安防监控、安全生产、园区楼宇、社区养老、建筑工地等多种场景。

UCloud优刻得智能AI边缘盒子具有以下特性:

1) 算法丰富

支持人脸识别、区域入侵、离岗检测、消防通道占用、电瓶车检测、火苗检测、高空抛物等20余种算法,并跟随业界需求,持续进行高频迭代。支持针对客户专用场景的算法迭代与优化。

2) 卓越性能

AI边缘盒子实现了毫秒级检测速度,支持30人并发抓拍。它采用国产化芯片,搭载RK3399Pro六核高性能处理器,采用双核Cortex-A72+四核Cortex-A53构架,主频高达1.8GHz,拥有强大的通用计算性能。四核ARM高端GPU Mali-T860,集成了更多带宽压缩技术,整体性能优异。

强大的AI运算性能NPU。CPU内部集成AI神经网络处理器NPU,支持8bit/16bit运算,运算性能高达3.0TOPS,相较于传统GPU作为AI运算单元的的大型芯片方案,NPU的功耗仅仅是GPU的1%,具有极高的算力效能比。

3)强悍硬件

UCloud优刻得自研的边缘硬件,配置优质金属外壳,隐蔽式引线孔,无风扇设计,铝合金结构导热,高效降温,通过了60℃高温老化测试,7X24小时稳定运行。

4)云边协同

基于嵌入式高可靠架构设计,AI边缘盒子搭配AI模型工厂(训练及部署平台),可实现硬件与算法的持续集成和持续开发,灵活加载、更新算法引擎、模型、应用及授权。支持部署第三方算法。

通过云边端协同的产品架构,UCloud优刻得致力于开放视频结构化AI能力,构建持续升级的AI平台服务,赋能企业用户、集成商、代理商等合作伙伴,打通算法到场景的关键环节,推动AI应用更大范围落地。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )