商业智能这一概念,自1996年提出至今,已经过了26年。市场对BI的态度,从好奇、探索直到习以为常,80-90年代的IT人还记忆犹新。
但如果有一家初创公司,要迈入这个成熟的市场,即使是团队内部也必少不了质疑的声音。在一个客户需求、产品功能、市场格局都看上尘埃落定的状态下,如何做成功一个全新的BI产品似乎缺乏讨论的价值。然而市场上依然有大量积极的声音在谈论BI的未来,下一代BI需要具备哪些特性,会带来什么变化。出现这样的反差和BI目前的使用场景有着分不开的联系。
在企业应用场景中,BI在绝大多数场景下还需要依靠人来完成,不管是基础分析逻辑的设计开发、维度和度量的选择与调整、展示效果的规划与解读,都需要依靠人来完成。而限于工具目前的发展水平,人参与比例相对较高,这会导致一个相对客观的数据分析场景,掺杂了过多人的主观判断。甚至会出现为了佐证某个观点,开发人员主动选择甚至筛选出符合目标预期的基础数据,选择适合的分析方法,以展示出与观点一致的趋势和期望,这就与商业智能通过整合数据,分析趋势,指导决策的初衷背道而驰了。
由于BI的使用,涉及到数据选择、维度塑造、数据统计、分析方法、展示设计等等环境,需要同时掌握数据、技术、业务、设计等多领域多学科的知识,目前在企业中负责此类工作的多为专业分析师、IT运维等职能人员。角色属性决定了他们无法对于决策的业务结果负责,割裂了分析与执行,决策和结果。理想的模式应该是让业务人员自主完成分析工作,和他们的主观判断结合,形成最优的解决路径,并由他们对结果负责。但是这一工作目前的推进可以说是步履维艰。
首先是数据的选择与加工,部分企业会将这一工作与数据分析分开,期望像流水线一样,实现对于数据资产的开发利用。但往往分析师拿到中台给过来的资产之后,还是需要做不少的处理工作。如果BI工具不支持,那就只能求助于sql或者专门的数据转换工具。其次是数据分析,简单的分析工作确实掌握统计知识就ok了,但是如果要做复杂分析,函数拟合、算法、非结构化的数据的结合,这些都是躲不掉的内容,这些对于业务人员来说都过于艰深了。最后辛苦做出来的成果,还需要固定成应用或者工程化导出到其他系统中,这又来到了软件开发的专业领域,需要具备代码和集成的相关知识。所以结合以上三点来看,并不是市场不希望业务人员参与,也不是业务人员没有主观的自驱,而是现实的能力模型需求,远超一般业务人员能够触及的范围。
下一代BI面向的这就是这样看似无解的困境,首先我们要认识到业务人员已经不是几十年前的产业工人了,不管是基础教育水平还是拥抱数字化的主观意愿,都有了巨大的进步。BI可以说经过20多年的发展已经具备了强大的群众基础,下一步就是要通过工具的自我进化实现双向奔赴。要数据融合,将数据的对接、开发、分析、展示,在一个平台内闭环,解决过程断层。要增强分析,提供专业全面的分析能力,强大的计算效率,让BI和Matlab一样,具备打硬仗的能力。要敏捷易用,做出来的成果能够灵活分享、落地和被集成,同时这个过程不能太苦涩。短期内无法让业务人员的能力模型实现质变,就只能要求下一代BI工具在业务模式化、流程自动化、算法模块化、交互智能化、展现个性化方面做到极致,让部分简单的工作可以工具自主完成,减少枯燥的重复配置。让部分复杂的算法设计与场景结合,易于理解和应用。这样,对于下一代BI的定义也就呼之欲出了,数据融合的增强分析型敏捷BI平台,基于这个方向,国外的tableau,国内的nextionBI都在持续发力,让BI工具和用户的关系更加合理,也让BI回归它被提出时的含义。
nextionBI于2022年2月25日下午,举办了线上产品发布会。与致力于数据分析引领业务成长的人们分享了nextionBI在成长中的点滴。开场之后,数睿数据总裁刘超,首先回答了一个观众都好奇的问题,作为一家无代码企业,数睿数据为何会进入BI赛道。刘超表示,是价值驱动了这一切。
数睿数据做BI这件事,核心不是金钱驱动,是价值驱动的。数睿数据的愿景是“让人人尽享数据价值”,只靠无代码还不够。无代码做的是数字矿脉的探知和数字矿山的建设,实现价值的高速高质积累。BI需要做的是数字矿产的挖掘和输出,实现价值从地下到手中的流转。是我们关注数据价值的过程中,不可忽视的一环。随着我们无代码产品越来越多的部署,客户对于价值提炼的需求愈发密集,也正是这点驱动了nextionBI的发布。
然而传统的BI已经愈发难以匹配全面数字化社会的发展需求,原因有三点。首先,产品的使用依赖专业人才,但是同时懂业务、懂数据、懂分析方法、懂市场需求的人才太匮乏了,限制了BI工具的发展。其次,国内受需求影响,过于关注可视化呈现,缺少对于分析方法的钻研,工具能力不足、指标固化、分析模型稀少的问题比较突出。最后,BI的价值没有展现完全,聚焦与“算”与“看”的客观描述层面,少了对于业务的促进设计。总结来说,BI走入了一个工具负责好看,分析厂家来干,知识难以沉淀的歧路。
时代呼唤下一代,刘超介绍,下一代BI应该是革故鼎新、关注行业知识、服务数字化转型的重要工具。革故鼎新是需要BI平台回归价值路线,放弃对于数据价值挖掘无意义的冗余能力,回到数据分析的主线上来。同时需要从行业数据资产中梳理出知识,让价值传递、复制成为可能。要符合数字化转型的政策要求,识别数字化转型过程中环境的变化和新的痛点,针对性的设计解决方案,这才是下一代BI该走的道路。
对于未来,从nextionBI新发布的logo中可以看出,中间的“O”,也就是origin,被更加清晰的阐释。一半是数据,一半是知识,BI从数据中来,到知识中去。而下一代BI应当面向知识设计,数据只是过程,知识才是目的。BI的未来是对知识的积累、发现和应用。
数睿数据智能工程部负责人车文彬,具体介绍了数睿数据理解的下一代BI。下一代BI应该是数据融合的增强分析型敏捷BI平台。首先是多源数据,极速融合,快速自动汇集企业各部门不同系统的数据,支持各类物联网设备数据接入,满足99%以上的数据处理,这是实现数据的处理、分析、展示在一个平台里闭环的第一步。其次是增强分析,结果共享,用AI技术赋能增强分析,从海量数据中找到难题的答案,把数据转换为动态图表,文字报告,大屏画面,迅速共享分析结果,这便是数据向知识转化的核心过程。最后是人人可用,自助分析,全程无代码,鼠标拖拽操作,让没有任何技术背景的人也可以很快学会使用nextion BI,自助灵活地进行数据分析。在数据融合、增强分析、敏捷易用这三个维度上,nextionBI已经形成了厚实的能力沉淀,形成了对于下一代BI的一个立体的展示。
车博士从产品架构、核心优势、能力矩阵三个维度出发,深度剖析了nextionBI的整体设计。并从知识积累、发现和应用入手,结合具体场景详细介绍了,nextionBI特色能力的应用方式。深入浅出、生动形象了描述了下一代BI和数字化时代生产者的关系。
发布会的最后,nextionBI的客户们也分享了他们的故事。他们都不是第一次接触BI工具,但在之前的工作过程中,现有的工具都有一些难以攻克的问题。在接触到nextionBI之后,他们开始尝试用下一代BI去解决现有的难题,改善异构数据的融合效率,尝试探索数据结果背后的根因,都收到了不错的结果。他们都谈到,时代在进步,需求在发展,工具自然不能一成不变,而面向新场景新需求设计的产品,也就是他们心目中的下一代BI。
汽车的驾驶,很多年前是一门少数人才会的手艺,逐步发展成大多数人都具备的技能,未来将走向一个AI主导的功能。降低工具对于人的依赖,是生产力发展的必然要求。而商业巨轮的船长需要将动力从浆到帆一步步交到“柴电”推进动力系统手里,才能更好握住自己手里的舵,驶向更广阔的海域,激起更大的浪花。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )