近日,在ICCV2021举办的LVIS Challenge Workshop比赛中,腾讯优图实验室荣获冠军,同时被授予该项目的最佳创新奖。LVIS Challenge 2021 是大规模长尾数据的实例分割任务,是本届ICCV的重磅比赛之一,吸引了众多国内外知名企业和高校参加。此次竞赛的核心技术方案也将应用于工业AI质检的场景中,进一步地提高缺陷检测与分割的精准度,用最核心的技术支持产业落地。
图1比赛最终榜单,腾讯优图排名第一
LVIS是包含1k+类别的大规模长尾分布数据集,相较于常见的实例分割数据集,LVIS具有更精细的标注和更多的类别,从而其分布更加接近自然场景。据统计,尾部类别的实例数量仅仅占比总实例数量的约0.41%,这对现有的实例分割算法提出了极大的挑战。另外,不同于以往的比赛,本次LVIS比赛采用了Boundary AP替代Mask AP作为评价指标,对分割精度提出了更高的要求。
图2. LVIS竞赛介绍
针对上述挑战,腾讯优图团队提出了平衡分布,优化边缘的实例分割方法,在测试集上取得了48.1%AP的结果。值得一提的是,在本次Workshop会议中,RossGirshick指出优图此次方法的APr与APf的结果非常相近!
图3.Workshop会议竞赛结果宣布Apr与APf接近
具体技术细节如下:
腾讯优图团队将Hybrid Task Cascade(HTC)实例分割算法作为baseline, 采用了表征能力更强的Swin-Transformer作为基础骨干网络,同时,基于CBNetV2,复合链接两个相同的Swin-Transformer网络,作为最终的骨干网络来加强性能。
图4. Strongbaseline
针对长尾问题,腾讯优图提出了分布平衡模块,包括数据平衡和损失平衡处理,从而提升网络训练过程中对尾部稀有类别实例的关注。其中,数据平衡方法包括RFS, Balanced Copy-Paste和Balanced Mosaic,增加尾部类别数据出现的概率,兼顾了image-level和instance-level的数据平衡性。同时,优图采用了Seesaw Loss,在训练中动态地抑制尾部类别上过量的负样本梯度,并补充对误分类样本的惩罚。
为了更好的优化分割效果,腾讯优图提出了精细分割模块,包含Mask Scoring和RefineMask方法。基于Mask Scoring方法,解耦了分类置信度与实例分割得分,用新的网络分枝学习实例预测的质量,从而避免了分类置信度与分割质量不匹配的问题。针对边缘分割精度优化,腾讯优图采用了RefineMask方法,融合多阶段的细粒度的上采样语义特征,从而产生高质量分割结果。考虑时间和精度的平衡,优图实验室仅将pipeline中最后一个Mask head替换为Refinemask head。由此可见,腾讯优图的方法仍然具有提升的空间。
除此之外,基于腾讯优图对训练过程的观察,创新性地采用了头尾部性能平衡的训练策略,不仅提升了整体的AP结果,更加极大地拉进了尾部与头部类别性能的差距。最终,优图团队以48.1%AP排名第一。
图5.(a)分布平衡模块 (b)精细分割模块
作为腾讯旗下顶尖的人工智能实验室,优图实验室聚焦计算机视觉,专注人脸识别、图像识别、OCR等领域开展技术研发和行业落地,在推动产业数字化升级过程中,始终坚持基础研究、产业落地两条腿走路的发展战略,与腾讯云与智慧产业深度融合,挖掘客户痛点,切实为行业降本增效。未来,腾讯优图实验室也将继续深耕CV技术,并将持续探索更多的应用场景和应用空间,让更多的用户享受到科技带来的红利。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )