极客网·人工智能5月9日 当AI 聊天机器人破茧而出时,很多人感到惊喜或惊讶。
这些大型语言模型擅长自我学习,并且能用各种语言和风格与人类进行交流。其生成的艺术模型几乎可以生成人们能想到的任何事物;能够回答人们可以提出各种问题,甚至越古怪越好;科学家们正在训练AI作曲、探索太空,以及执行传统上由人类完成的重复性任务(这让很多人担心他们的工作岗位会被替代)。
尽管取得了惊人的成果,但AI呈现出来的严重问题却只是冰山一解。也许人们还没有注意到,也许仍然处于敬畏的状态。然而别无选择,我们只能努力解决AI带来的现实和道德困境。当AI带来的奇迹和梦想开始消退时,人们不能忽视阻碍AI发展的七个“减速带”。
1、资源稀缺
大多数大型AI模型依赖于大规模并行计算,这些计算可以通过GPU或TPU专用芯片来加速。充分发挥AI模型的潜力需要采用大量IT硬件,但成本高昂。
每家厂商及个人都希望采用更多的IT硬件,在过去的几年,由于供不应求,芯片和IT硬件的成本飙升。更糟糕的是,越来越多的人正在使用云计算服务,导致云计算平台容量扩展的速度难以满足需求。
硬件并不是成功推出AI所需的唯一稀缺资源。运行大型AI模型还需要大量电力,但并不是每个国家或地区都能充分供应。在地缘政治冲突和主要采用可再生能源电力的地区,能够以可预测的价格获得足够的电力是一项挑战。为了弥补损失,一些云计算提供商正在提高某些地区的云服务价格。
2、AI伦理
人类总是知道在某些场合避免争论一些问题,然而AI需要学习如何在各种情况下处理此类问题。一些大型语言模型被编程为对提出的问题转移话题或者拒绝回答,但一些用户总是很执着,当这样的用户注意到AI在回避一些棘手的问题,例如引发种族或性别偏见的问题时,他们会立即寻找绕过这些护栏的方法进行提问。
随着时间的推移,AI数据偏差和数据不足是可以纠正的问题,但与此同时,恶作剧和滥用的可能性也是巨大的。虽然让AI发表仇恨言论很糟糕,但当人们开始使用AI来探索现实生活决策的道德含义时,就会变得更加复杂。
3、AI劳动力待遇不平等
许多AI项目依靠人类的反馈来指导它们的学习。通常情况下,一个大规模的AI项目需要大量的人员来构建训练集,并随着模型规模的增长调整大型语言模型的行为。对于许多项目来说,只有在贫穷国家向训练人员支付更低工资的情况下,才能在经济效益上可行。
这引发了人们对于AI公平和公正的深入辩论,但没有人能够为开发大型AI项目找到经济可行的解决方案。正如宝石行业人士并不考虑从事采矿这一棘手而危险的工作一样,AI行业也没有简单可行的劳动力成本解决方案。
4、糟糕的反馈循环
以虚假新闻和评论的形式出现的虚假信息已经存在了一段时间,无论是处于政治考量还是获取利润目的,虚假信息总有市场生存空间。然而阻止不良行为者的AI算法异常复杂,需要大量维护,大模型供应商不见得会花大力气来解决这个问题。
可以想象一下,当AI开始被用来制造虚假信息时会发生什么情况:一方面,虚假信息的数量将呈指数级增长;另一方面,有的AI系统很有可能会选择假信息并将其反馈到训练语料库中。如此,病毒式传播的错误信息将会对人们的社交网络带来不利影响,糟糕的反馈循环可能会破坏知识和信息。
5、法律法规
AI通过复制大量的文本和图像来学习它们所知道的一切。在大多数情况下,创造这些数据的人类从未被告知,他们的成果可能被价值数十亿美元的AI模型所盗用。
当这些人的工作被AI取代时会发生什么?他们可能去找律师处理许可、版权和剽窃知识的问题。人们可能会通过训练AI学习相关的判例法规,但是,可以在几毫秒内做出裁决的AI法官要比一个需要数年时间权衡问题的人类法官更可怕。
还有另外一种场景:当AI错误地评价某一历史事件或当今流行文化时,可能只会令人反感,但不会直接伤害到任何人。但是当AI说出一些贬损某人的话时,实际上成为了一种诽谤。很容易想象,如果AI诽谤某人时,假设这个人雇佣律师进行诉讼,那么AI本身需承担责任吗?还是拥有它的公司承担责任?
6、死亡与毁灭
现在好像并没有显著的例子表明,被坏人利用的AI就像科幻电影中的恶棍那样邪恶。众所周知,自动驾驶汽车和工厂的机器会犯错,但到目前为止,似乎还没有恶意事件发生。然而对于AI来说,人们似乎还不知道如何解释它造成严重伤害或死亡的可能性,以至于AI威胁论始终萦绕在人们的耳边。
7、期望值过高
人们通常认为AI的思维方式可能和人类一样,但这可能是错误的。真正的问题是,AI具有截然不同的智能形式,还没有被人们理解。作为一个新物种,人们对AI的独特优势和劣势还有很多需要了解的地方。
与此同时,AI也被人们的乐观情绪所炒作和鼓舞,以至于它永远无法实现人们的梦想。只要是人们的想法和希望超越现实,那么AI领域的发展注定会让人失望,这可能会极大地阻碍AI的持续发展。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )