华为安全CTO开讲:未来已来,安全有AI

摘要:

在纷繁复杂、光怪陆离的数字世界,漏洞的必然存在和入侵的不可避免,使网络安全成为永恒的话题。无论在入侵者还是防御者眼里,都在寻求有力的武器。AI技术的出现,在自动化助力上,能显著提升攻防双方的能力基线。

未来已来,机器智能对抗是新网络安全时代的选择。本文详细阐述了,AI在网络安全应用的必要性、可行性、应用实践,以及经验总结。从专家知识经验到安全数据利用,从安全左右脑的双轮驱动,到多方知识协同,打造抵御多方位立体化攻击的安全长城。

网络安全的问题源自何方?

安全问题的本源:系统中蕴含超出设计意图的输入、中间过程和输出。一个简单的函数设计,功能点是:特定的输入下的特定的输出。实现时候,可以采用不同的内部逻辑,都能实现此功能点。良好的设计,会充分考虑例外的输入,不同中间过程中的异常处理,以及非预期输出的处理。但实际开发过程,由于开发能力、进度压力、逻辑复杂度大等各方因素下,会有各种设计意图外的副效应,而这些副效应会成为系统的漏洞,并被利用产生非预期的行为。

对于需要大量人员参与、大量逻辑迭代构建的系统,其复杂度呈指数上升,就会在某种程度上超出设计者的能力控制范围。

系统的漏洞不可避免,不可杜绝。任何的系统都必然存在漏洞,有漏洞就可能会被入侵。

不夸张,不粉饰,如何客观看待当下网络安全的真实存在?

传统基于静态规则和签名、简单行为识别武装起来的防御系统,可以抵御常规攻击,但在有计划投入的黑客组织的持续攻击下,基本是透明的。近年来国际安全行业针对“assume breach”形成共识,是否被入侵成功,只取决于自身的商业和政治价值以及入侵的成本。在高价值目标里,入侵是已经客观的存在,并将长期存在。所以,从危害程度看,内网安全防护会是未来的重中之重。

同时随着万物互联的智能世界的到来,网络攻击日益增多且越来越自动化、智能化。复杂的攻击可以自动检测环境,从而混淆、躲避和变种;高度自动化的工具使攻击变得更加聪明,传统防御策略是无法处理这些问题。安全团队的人力会淹没在大量的告警事件中,产生告警疲劳,从而难以及时识别和应对真正的威胁。

网络安全的现实困局是:

1、组织内安全专家人力和知识不对等,

2、专业安全设备的应用复杂度高,导致对网络威胁根本视而不见或者即使见也无力处置,干脆当个脑袋埋入沙堆的鸵鸟,麻木不仁、听天由命,直到产生巨大危害的那一天。

漏洞的必然存在,和威胁入侵的不可避免,如何保卫数字世界的安全呢?

如果把网络世界的安全看做是一场攻防战争,攻防各方首先都要有强大的军备。在这个军备清单里AI会是关键武器。作为新时代的电力,它将发光并照耀整个真实及虚拟的世界。

在网络安全领域,传统防御模式的假设是:所有攻击场景都是已知的,每种攻击场景和应对策略一一对应,那么基于规则的系统便可高效地运行。类似于中国武术的散打表演,按照固定套路来。

但现实是残酷的。

随着大数据时代的到来,黑客的攻击手段日趋复杂与多样,新型病毒和病毒变种层出不穷。例如2017年勒索病毒WannaCry席卷全球,150多个国家遭遇攻击。WannaCry爆发后,依然不断有黑客修改该病毒,新型病毒及变种不断涌现,勒索病毒已成为威胁互联网安全的一大毒瘤。

AI作为信息世界的最新技术,也已经被具有创新精神的黑客组织采用来武装自己。面对这些疯狂且极具创新颠覆意识的对手,传统防御技术已无法跟上快速演进的攻击和威胁。不要说新型未知威胁,即使对于已有的安全漏洞的攻击变种,也很难及时发现并有效处置。

同时,国内网络安全市场正在经历一场场转变。从注重安全合规,向注重效果转变;从原来的流于表面的安全设备购置和部署匹配,向注重实战的攻防演练、调查问责转变。网络安全的建设模式,也从被动防御转为主动能力建设。整个网络安全行业最终进入基于AI的机器智能对抗时代:谁拥有更多的AI能力和攻防知识,谁的获胜面就更大。

AI是一种机器展现的智能。理想的智能机器能够感知周围环境,并采取行动以最大可能达成特定目标。教科书对AI的经典定义是:

1、象人一样行动、象人一样思考;

2、合理地思考、合理地行动。

在网络安全领域的AI应用可以定义为替代安全专家能力的自动化技术

当前,促成AI在网络安全领域应用的要素都已经集齐:

1、高性能计算AI芯片;

2、大量可采集的数据、日志和安全事件;

3、AI算法近年来的突飞猛进,聚集这个时代大量最优秀的大脑。无论传统机器学习、贝叶斯网络、知识图谱,还是深度学习、图计算,在各行各业都得到充分的实践。

即使上述条件成立,人们还是会有疑惑:在极具个人英雄主义色彩的安全攻防领域,面对新型威胁的创新不断和灵活多变的网络攻击套路,在攻防双方成本严重不均衡的博弈场景下:

AI是否具备解决网络安全问题的条件并真能成为关键武器呢?

首先,判断待解决问题的背后,解是否存在。世界是稀疏的,世界万事万物背后都会有一定规则在起着作用,包括大自然的作品和人类的所有作品都一样。物理世界,从量子力学看,微观上是由不确定性原理和薛定谔方程的概率波统治的;而宏观上,则是由广义相对论、麦克斯韦方程组统治的充满确定性的世界。

理论上,围棋有超越宇宙中所有原子数量的变化。而实际上,AlphaZero经过450万盘的强化学习,就已经可以战胜AlphaGo Lee了,这表明每个局面可选择的有效下法其实是有限的。所以,在特定场景和具体设计下,事物的存在和发展在可量化描述的维度上是稀疏的,有大概率的趋同性。

网络攻击也是基于一定的样本和攻防理论,而非完全孤立和随机离散,也就内含了某个模式或者规律,是可解的。

其次,探讨和提取模式和规律,有很多成熟的科学方法。

在简单的系统中,通过归纳总结,人类专家就可以提取出规律,用在网络安全领域就是一系列的安全规则、签名以及情报。在复杂的系统中,模式和定律需要通过大量数据分析才能得到。

AI是超越人工的利器,可以从数据中找到特定的模式并刻画事物的特征,总结出定律和定理,并抽象为可以用符号推理表达的知识。比如,引爆此次AI技术浪潮的是基于深度学习的神经网络,它之所以有如此大的作用,正是因为它较好地模拟了人脑这“分层”和“抽象”的认知和思考方式。其实质,是通过构建隐层的神经网络模型和获取海量的训练数据,来学习到更有用的本质特征,从而最终提升信息分类或预测的准确性。图像识别通过应用深度神经网络,已经拥有超越人的识别能力。现实中,人脸识别应用非常广泛,也已经显示出高于人工识别的优越性。在数据中心的AIops中,AI同样发挥着重要作用。

AI本身擅长的就是,从大量纷繁复杂、但含有有效信息的数据中寻找本质的模式或规律,对于网络安全领域也一样。

AI如何有效的应用于网络安全领域?

网络安全AI应用的目标是替代人类安全分析专家在特定场景下的工作,实现自动化。

我们先看看人脑的决策机制:

右脑,感性,非计算模式,从已存储的模式中启发式匹配检索。即通常意义上的直觉,可以快速匹配、快速反应,根据历史经验来提取关键事物特征和行为模式,从而第一时间做出决策。

左脑,理性分析,通过一定的逻辑计算,从普世定理和领域知识出发进行演绎推理。从知识概念中来,到现实证据中去,通过推理模型预测和证据对照来判断真伪,指导做出决策。

理性可避免错误,但也可能会受限于旧知识而因循守旧。感性激发创造力和快速反应,但会陷入被设计的陷阱,误判较大。

人的决策,很多时候是左右脑互博而达到协调统一,才能给出更合理的结论。

AI在网络安全中的应用模式,也大概如此。安全AI右脑需要有类似老刑警“看一眼即懂”的能力,不放过任何一个可疑分子;安全AI左脑需要用攻防知识库和推理引擎来武装自己,从多维关联、攻击链、图计算到知识图谱,推导得出一个更合理的最终决策。

AI在网络安全中的应用模式如下:

第一、安全数据的加工中AI的应用。安全数据加工目的是自动或者半自动产生安全情报、规则或者签名。一般来讲,这个加工过程需要安全专家参与最后的确认与调整。通过利用AI工具,可以过滤掉大部分无用的数据,并给出更精确的情报、规则和签名的建议,减少安全专家的分析工作量,提高工作效率,减少重复的劳动。

第二、有监督学习的安全AI检测:通过对海量黑白样本的学习,建立分类模型,识别威胁的真实性,是最常见的应用。有别于静态固定的签名和规则,AI模型比人类专家更能在海量数据中找到最接近本质的特征表达,因而有更强的泛化能力,适应于各种变种。变种很多有家族属性和恶意代码的重用度,这些是监督学习算法最擅于捕捉到的关键特征,但需要注意的前提是大数据量和高质量的黑白样本,以及场景问题在可以用的安全数据中的信息含量多少。

构建AI模型的门槛即低又高。低,是因为数据驱动的机器学习和深度学习,无脑拟合,容易过拟合得到高精度得分,可以在局部数据很到漂亮的结果;高,是因为要替代或者超越人类安全专家,首先需要的数据不仅有量还要有质,同时在算法上有深入研究。到模型构建的最后时刻,每前进1个百分点都非常困难,需要“炼丹师”般高深的功底才能取得一个实战环境基本可用的AI模型。而这只一个开始,AI模型还要根据不同客户具体环境下的安全数据的分布差异,不断的迭代优化,反复打磨才能实战可用。

第三、无监督学习的安全AI检测:无监督学习不需要事先标记好数据,而是可以通过数据本身在时空维度上的内在联系,建立行为基线;或者通过聚类算法,来表达数据本身的分布属性,从而获得安全数据的分布模型。通过数据空间的分布模型可以发现异常,分类不同的数据集合,从而自学习、自适应地识别0 Day攻击或基于已知漏洞变种的攻击。无监督模式是很好的未知威胁检测方式。

第四、基于安全AI的认知能力构建,从安全攻防知识、资产的脆弱性/重要性、情报,通过各种知识推导给出最终结论,可用于最终决策,高级威胁识别,同时给出威胁自动处置脚本,加快响应速度,减少系统受损程度和增加对APT组织的攻击预判。

AI在网络安全中的具体实践举例:

(1)基于DNN的恶意文件检测

恶意文件数据量巨大,大部分会有有家族性,有较好的AI检测基础。

恶意文件检测基于深度学习DNN模型,用以识别文件是否为恶意文件。其优点是检测算法使用了静态检测技术,无需恶意文件的运行时行为,常用于本地检测。此外,模型小于1MB,运行内存小,适合防火墙做轻量化检测。

恶意文件的本地检测流程

恶意文件检测建模

(2)C&C检测——DGA和DNS隐蔽通道检测

C&C是内网防护的重点,同时也积累这大量的流量行为数据,有较好的AI应用基础。DGA(域名生成算法)是一种利用随机字符来生成C&C域名,从而逃避域名黑名单检测的技术手段。DGA检测使用了卷积神经网络(CNN)的模型,识别准确率高达99.9%以上。

DGA检测恶意域名

DNS隐蔽通道是指黑客利用DNS协议实现诸如远程控制、文件传输等操作。例如2017年著名的XShell DNS通道攻击,黑客在XShell中植入恶意代码,通过DNS隐蔽通道外发用户敏感数据。一个典型的DNS隐蔽通道攻击过程如下图所示。

DNS隐蔽通道攻击

①被控端发起包含“数据上传”的域名请求

②域名请求DNS服务器进行递归查询

③控制端服务器返回含C&C data的DNS应答

④C&C data到达被控端

使用深度学习卷积神经网络(CNN)识别DNS隐蔽通道。通过batch normalization、word embedding、dropout等技术优化CNN模型,使得DNS隐蔽通道识别准确率高达97%以上。

(3)恶意加密流量识别

互联网上的加密流量呈现增多趋势。同时,为绕过传统的流量检测技术,也有很多恶意软件通过TLS加密流量进行通信。如何识别恶意和正常流量,从而有效及时阻断,需要用到基于AI技术的方法。

加密流量识别过程

整个工作分为3大部分:

1、首先安全研究人员通过获取的黑白样本集,结合查询开源情报,域名、IP、SSL等的情报信息,进行特征信息提取;通过对黑白样本的客户端签名和服务器证书的签名进行分析;基于上述分析取证的特征向量,采用机器学习的方法,利用样本数据进行训练,从而生成分类器模型。这就形成CIS安全态势感知系统最核心的ECA检测分类模型。

2、流探针提取网络流量中加密流量的特征数据,包括TLS握手信息、TCP统计信息、DNS/HTTP相关信息以及3/4层协议统计信息,统一上报给AI分析系统。

3、AI分析系统结合自身的大数据关联分析能力,对探针上送的各类特征数据进行处理,利用检测分类模型识别加密流量中的异常C&C连接,从而发现僵尸主机或者APT攻击在命令控制阶段的异常行为。

AI在网络安全应用总结

①借助AI技术的自动化数据加工可提升数据处理效率,让安全专家更专注于价值信息,从中提取更有效的规则、签名、情报。内嵌入静态规则引擎,简单高效,是安全防御的重要手段,实际在广泛应用。

②在威胁手段不断变化和漏洞日益增加,常规防御手段失效的情况下,更能适应变化的AI检测模型成为最后的兜底、最后的防线。建立成百上千的AI检测模型的集群,可以从各个方位形成天罗地网,构筑最强力的防线。

③我们还必须从组织的安全管理的视角出发,从网络虚拟空间走向物理实体空间,实现用户友好的AI安全检测和威胁闭环,协同业界顶尖的安全专家能力,赋能给单个组织,抵御外部的持续攻击,实现威胁的预防和根治。安全能力来自对网络安全空间的认知理解,包括:实体(用户、主机、系统、应用等),威胁(情报、漏洞),APT组织和其攻击技术。知识决定命运,安全知识多的一方会获得更大优势,构建多层次的AI推理引擎是知识应用的关键。

人工智能技术能够解决静态规则引擎的弊端,从而加强威胁检测能力,并通过知识智能推理来解决安全运维面临的挑战。目前硬件生态的繁荣、AI芯片的涌现为人工智能技术在网络安全领域的落地提供了坚实保障。此外,AI能够助力设备间以及云间协同,促进安全互动生态的发展,通过多方联动打造越发牢固的安全平台,为企业筑起安全防护的钢铁长城。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2020-02-24
华为安全CTO开讲:未来已来,安全有AI
摘要:在纷繁复杂、光怪陆离的数字世界,漏洞的必然存在和入侵的不可避免,使网络安全成为永恒的话题。无论在入侵者还是防御者眼里,都在寻求有力的武器。

长按扫码 阅读全文