落地,是2019年AI行业的共同话题,创造价值、降本增效,成为行业共识。
作为AI头雁公司、也即将成为AI创业第一股的旷视,又是怎样看待落地这个话题的?
而作为一位技术领袖,旷视联合创始人兼CTO唐文斌,又认为当下环境下有哪些技术创新的机会?
AI
在MEET2020智能未来大会现场,作为在行业中摸爬滚打八年的实践者,唐文斌用四个字解答了人工智能落地的议题——价值创造。
要点
1、 AI落地必须回答产品经理灵魂拷问:你到底给谁创造了什么样的价值?
2、 AI的价值主要体现在三个方面:成本优化、效率提升、体验增强。
3、 AI在不同行业发展的速度不一样,有难有易,更容易发展起来的,是那些给予AI试错机会的场景。
4、 AIoT 是人工智能技术与产业深度结合的必经之路,因为硬件成本逐渐变得更低,5G让连接变得更迅捷,在这些基础之上实现非常好的IoT的连接后,就能够产生更多数据,让AI算法实现快速突破。
5、 AIoT在体系下有且仅有三种角色,分别是感知器、决策器、执行器,每个部分都有创新机会。
唐文斌演讲分享全文
谢谢大家!谢谢主持人对我们的介绍,其实AI公司做的事情并非光鲜亮丽,反而非常的实际、非常的累,所以今天我想讲点接地气的事情。
现在很多人都在讲AI,我们也可以看到AI技术确实给不同场景带来了很多应用,机器学习、深度学习都给计算机视觉、语音识别,NLP等一系列的技术提供了好的手段,使其性能有大幅度的增长。
因此,这也给不同产业带来了不一样的价值,从技术到产业落地的过程已经在实践、在发展了。
举个例子,我们现在可以通过计算机视觉帮助制造业厂商做缺陷检测,用机器人帮仓储物流行业降本增效,用AI的方式让你提前测试某款化妆品、衣服的上身效果,不用再出门去商场了。
不管是降低成本、提升效率还是增强体验,在很多场景中,AI都是用这样的方式来产生价值的。
但是这件事情并没有大家想象中的那么好。
在AI的热度之下,其实企业对AI如何落地、如何使用、如何给自己带来价值,是没有那么清楚的,落地的过程也没那么容易,这也是我一上来讲我们做的事情并没有那么光鲜,反而非常累的原因。
AI落地回归价值本身
这是Gartner统计的阻碍企业应用AI的原因,其中包括现有员工缺乏相关的技能、对AI的作用和用途不了解、缺乏数据、系统整合起来比较麻烦、场景不清晰、战略不清晰、隐私安全保护、价值不好衡量……一大堆的问题,其中有几个问题是比较关键的。
首先,我们做一个应用产品,需要尽可能控制成本,不管是算法研发的成本,还是技术应用的成本,我们必须要算这个账。这项技术/产品地使用带来的价值增量到底有多大?如果企业不采用这项技术/产品,成本相对而言是更低还是更高?你的ROI怎么样?这是我们必须要回答的问题。
第二,当我们在一个特定场景中落地的时候,需要一个完整的解决方案。如果你的方案不完整,不能帮用户解决切实的问题,企业怎么会用起来呢?所以需要明确的落地方案。
第三,需要更多的专业人员。因为理解技术和理解场景这两种知识往往分布在不同的人群,需要两类专业人员结合到一起,才能够深入到场景当中解决行业痛点、给客户带来真正的价值。
今天我们讲AI技术讲了很多,但AI本质上只是一个技术实现手段,最终大家都要回答产品经理的灵魂拷问:
你到底应用AI在这个场景给谁创造了什么样的价值?为什么你能行?为什么是现在?
这是最根本的问题,AI带来的价值有多大?客户愿不愿意用?
对于技术公司来讲,我们也需要回答这样的问题。我们需要从价值创造的角度、从需求侧来看是不是真的解决用户的痛点,技术应用能不能成规模,我们才会选择做这样的方向。
反过来讲,我们也要考虑技术能不能满足这样的场景。
任何技术,不管是人脸识别还是自动驾驶,都必须回答一个问题:你的技术成熟吗?性能足够解决这些问题吗?
我认为自动驾驶应该是从低速到高速的发展路径,先做低速自动驾驶,再做高速自动驾驶;应该是从受限场景到开放场景;应该是从运货到运人。因为自动驾驶是一个肩负着极重社会责任责任的应用,价值极其大,最终必将被人类所征服。但是它的技术也许需要三年、五年,或者十年,甚至更长的时间才能成熟。
自动驾驶是一个价值极其大的场景,自动驾驶必将被人们所征服。
所以我们在思考任何一个场景的时候,都需要回答本质问题:
你的价值到底够不够大?
技术能不能满足用户需求?
只有这两点结合起来,才能够给这个场景真正地创造价值。
从做错了也可以补救的场景开始
正是因为AI落地应用有需求侧的问题,有供给侧的技术问题,所以我们会看到不同的行业发展的速度不一样。有一些场景会相对简单,有些场景会相对的难。那什么场景更容易发展起来呢?我们觉得要先从你做错了也可以补救的场景开始。
举个例子,比如说我们现在做缺陷检测。缺陷检测场景的核心是“宁可错杀一千,不可放过一个”,错杀就错杀了,人工再来一遍就好了,通过人机结合的方式可以做到一个很好的体验。
此外在视觉识别的很多场景下,虽然AI只是起到辅助性的作用,但它帮助人提升效率、降低成本,在这些场景下,错误是可以补救的。所以虽然这种场景下AI的精度很重要,但它并没有那么关系重大,还有一定的容错率。
而在一些成败攸关的领域,比如自动驾驶,还有我们在做的生产制造、物流,都是一些更偏向主营业务线上的工具,我们有客户就提到:“如果你导致我的生产线停产几分钟,你就要给我相应的赔偿。”
因为任何意外停顿都会给客户的生产线带来巨大损失,在这样事关重大的场景,AI是不能出错的,否则付出的代价是很大的。
因此我们衡量AI落地领域热度的坐标系里有两个轴,一个轴是价值大不大,价值越大,这个领域越热门;另一个轴是技术行不行,技术越好,这个领域就会越热门。
所以AI可以赋能非常多的行业,但是当下这些行业还处在发展周期的不同位置上。
现在是发展AI特别好的时机,大家都在讲AIoT,AI+IoT是特别干柴烈火的场景,因为硬件成本逐渐变得更低,5G让连接变得更迅捷,在这些基础之上实现非常好的IoT的连接后,就能够产生更多数据,让AI算法实现快速突破,新技术也就得到了更好的结合,能够被应用到各种场景中。
AIoT的三个角色:感知、决策、执行
我分享一下旷视对于AIoT的理解。我们认为整个AIoT体系下有且仅有三种角色,分别叫感知器、决策器、执行器。道理其实很简单,比如人用眼睛和耳朵做感知,用大脑做决策,用手和脚做执行,任何一个场景都是这样的闭环架构。
举个例子,比如我们有一个产品是人脸识别门禁,就是特别简单的AIoT场景。感知环节是用摄像头拍人脸;决策环节是对人脸进行判断,如果这个人是公司的员工或访客,就把门打开;执行器就是那个门。这就是非常简单的场景。
再比如我们给日本客户做了一个演示,控制很多的机械臂、传送带、AGV(自动导引车,有轮子的移动机器人),帮助仓库、工厂实现自动化。这里面的感知环节,是有很多的摄像头对货物、场景、操作者进行感知,通过IoT的方式收集设备的数据;决策环节就是决定机械臂什么时候该动,小车什么时候去哪个地方接货物、走什么路径、送到哪里去;最后是执行需要有一个好的硬件载体做执行。
感知、决策、执行,这是我们做AIoT的框架和逻辑。
AI也好,IoT也好、AIoT最终还是要回到价值,我们到底给什么场景、什么客户、在什么样的情形下带来价值。
价值主要是三个方面:成本优化、效率提升、体验增强。所以我们必须思考如何能够给客户带来这方面的价值。
因此我们判断一个场景该不该做,也是通过前面这些方式。我们要考虑ROI,要考虑给客户带来了什么样的回报,要看技术是否成熟,场景是否够大,如何能实现规模化。
现在,任何一个场景中都需要很多算法,比如说视觉识别在工业场景中的应用,可能需要上千个算法去识别不同的东西。
所以,低成本、大规模产生算法,是AI赋能得以迅速推广的关键。
那么视觉算法如何低成本实现呢?有没有批量化生产这些算法的机制?
旷视的解决之道是做了一个底层的算法平台,叫Brain++。Brain++做的事情就是通过高效的深度学习的平台,更有效、低成本地生产算法,让研究员更快生产出他们想要的算法,通过AutoML的方式,针对已经规范好的场景,自动化生成算法。
感知层的算法、决策层的优化算法、控制层的控制算法,都可以通过Brain++降低生产成本,也降低了AI应用到一个场景的成本,让AI落地到更多产业中去。
基于算法,能够形成行业的应用软件和平台软件,比如在不同场景中需要不一样的应用软件。那么这些应用软件是否有好的PaaS层、提供好的共性、提供更低成本的落地方式,关系到整个过程能否实现低成本化,实现贴近使用场景,这是非常关键的事情。
旷视在做什么呢?我们基于Brain++算法平台,深耕三个主要的应用场景。
第一个场景以手机为终端,去赋能手机,让手机具备识别人脸的能力,具备识别各种信息的能力,能够刷脸解锁,能够把照片变得更漂亮,让相机变得更智能。
第二个是城市物联网,以相机为终端,通过分析相机中的数据,让城市变得更加的便捷和安全。
最后一个场景是供应链物联网,就是前面讲的把机器人、机械臂、AGV等一系列的自动化的设备连接起来,通过视觉的方式提供完整的解决方案,给仓库、工厂降本增效。
这是我们支持的天猫超市的一个仓库,大概用了400多台机器人,来帮助天猫超市完成整个京津冀地区的发货。如果在座的各位在北京去下天猫超市的订单,很有可能是我们的机器人系统把货发给你的。
对于旷视这样的技术公司来说,AI的场景其实是有巨大机会的,因为AI作为一个很好的手段,可以给不同的场景带来不同的价值。
具体怎么去创新呢?放在刚才感知、决策、执行的框架下来看,其实每一个环节都有创新的机会,都有做出足够好的差异化产品的机会:
我们可以做出不一样的传感器,通过感知算法加上新形态的传感设备,实现更好的感知,面向更多感知维度,提高精度,实现更好的集成度。
我们也可以做更好的决策器,这能提供很大的价值,比如解决仓库里大量机器人的统一调度、统一运行问题,需要优化的算法,需要一个决策器;如何让收集来的海量数据产生对场景有价值的计算方式和业务模型,这些都是在决策器上可以做创新的点。
在执行器上,我们也可以做很多不一样的执行器、不一样的自动化的装置、不一样的设备。AI+IoT对于场景能够带来非常多的价值,旷视作为AIoT方向的践行者,我们最早从感知出发,现在从感知逐渐迈向决策、迈向执行,也希望通过这些技术方式,最终给客户创造更大的价值。
这就是我们现在在做的事情,谢谢大家。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )