卡耐基梅隆大学研究人员利用AI 实时预测停车位占用情况

大家都经历过这种情况:驱车数英里到达目的地却发现,所有的停车位都被占满了。虽然谷歌地图(Google Maps)等应用程序可根据历史数据,预测停车位情况,但是该方法仍具有局限性。据外媒报道,美国卡耐基梅隆大学(Carnegie Mellon University)的科学家进行了一项研究,推出了一个人工智能(AI)系统,可实时预测停车位的占用情况。

进行该研究的科学家认为停车场传感器易出现故障和错误,因此不从此类传感器上收集数据,而是利用停车计时器所进行的历史交易,在使用额外数据进行预测之前,先估计是否有空余停车位。据估算,大约有95%的街边收费停车场都通过计时器来进行管理,表明此类模型比独立的传感器系统更具通用性。

研究团队使用了一种基于节点、边缘、属性和其他图形结构的图卷积神经网络来进行建模,说明停车场位置、交通流量、停车需求、道路链路和停车场之间的统计关系。该系统结合具有长短时记忆的时间递归神经网络(一种能够学习长期依赖能力的AI算法)以及多层解码器,从与交通相关的数据源中(如停车计时器交易信息、交通速度和天气情况)提取停车信息,并对停车位占用情况进行预测。

研究人员根据匹兹堡市区的数据对该模型进行了测试,在匹兹堡市区的39个街区中共有97台路边停车计时器。由匹兹堡停车管理局(Pittsburgh Parking Authority)提供历史停车数据,网联汽车公司Inrix的交通信息频道(Traffic Message Channel)和WeatherUnderground应用车型界面(API)提供交通速度数据和实时天气报告。

研究人员表示,在测试中,该模型在前30分钟预测停车位占用情况比其他方法表现更好。他们将该人工智能系统的卓越性能归功于天气和交通速度数据——尤其是天气数据,该数据提高了预测的准确性。未来,研究人员将制作一个模型,该模型将结合交通数量、道路封闭、交通事件和事故等与交通相关的额外数据。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2019-01-25
卡耐基梅隆大学研究人员利用AI 实时预测停车位占用情况
大家都经历过这种情况:驱车数英里到达目的地却发现,所有的停车位都被占满了。虽然谷歌地图(Google Maps)等应用程序可根据历史数据,预测停车位情况,但是该方法仍具有局限性。

长按扫码 阅读全文