2019年1月10日,由中国自动化学会联合中国科学院自动化研究所、中华人民共和国工业和信息化部与中国人工智能产业发展联盟主办的2019国家智能产业峰会在山东青岛召开。峰会以“工业智联网:AI赋能,智联世界”为主题,旨在使广大从业人员更好地理解工业智联网本质,挖掘工业智联网潜在能效,进而推动智能产业发展。
中国自动化学会理事长郑南宁、中科院自动化研究所党委书记牟克雄、工信部电子科技委副主任兼秘书长莫玮、青岛市人民政府副市长张德平作为嘉宾,悉数到场为智能产业峰会致辞。会上,青岛智能院宣布与国科嘉和、徐工集团、慧拓智能、吉利集团以及松鼠AI等五家企业达成重大合作,并举行签约仪式。
人工智能与自动化发展历程以及趋势
中国工程院院士、中国自动化学会特聘顾问柴天佑以“工业人工智能发展趋势”作为主题,登台为峰会发表论坛报告。柴天佑首先讲工业人工智能拆分成人工智能与工业两部分,回顾了人工智能的发展历程。提出2010年以后三大因素促使人工智能发展浪潮。分别是:
1.来自政府、电子商务、商业、社交媒体、科学、政府提供可用的大数据
2.强大的计算能力
3.科技产业增加在人工智能领域的投资
由此可见,可用大数据、计算力、产业投资在人工智能发展当中占有相当重要的地位。
2016年,谷歌首席执行官桑达尔指出,机器学习是人工智能的核心。谷歌正将机器学习应用到公司的所用产品当中。拉开了人工智能机器学习的发展热潮。
由此,深度学习快速发展。在图像识别领域,人工智能2016年的识别错误率以降低到3.5%的成绩,标志着图片识别领域已开始超过人类。(人类错误率:5%)
目前人工智能技术发展在朝着可解释机器学习、建立智能系统两个重要方向发展。
柴天佑
柴天佑指出,人工智能分为弱人工智能和强人工智能两种类型。此前,运用较广的是人工智能是指图像识别、语音识别等窄面运用的弱人工智能。未来人工智能将朝着与人一样智慧全面的AI发展。而基于统计的、无模型的机器学习方法存在严重的理论局限,难以用于推理和回溯,难以作为强人工智能的基础。实现类人智能和强人工智能需要在机器学习系统中加入“实际模型的导引”。
并且,机器智能系统在企业、政府和全球居民的日常生活中占据越来越重要的角色,很难估计计算机控制系统在不久的将来可以实现哪些功能。因此,人工智能领域正朝着智能系统的方向发展。
自动化的界定并不明确,且随着时间推移不断变化,但多年来一直秉持一个核心目标:研制系统替代人或辅助人去完成人类生产、活动和管理活动中的特定任务,减少、减轻人的体力、脑力劳动,提高工作的效率、效益、效果。
近年来,自动化的发展趋势在向控制系统自主控制、管理与决策系统智能优化、且形成优化、决策、控制一体化系统等方向发展。
工业人工智能的作用与难点
柴天佑教授指出,自动化与人工智能之间的共同点在于:都是通过机器延伸和增加人类的感知、认知、决策、执行的功能,增加人类认识世界和改造世界的能力,完成人类无法完成的特定任务或比人类更有效的完成特定任务。区别在于研究的对象与方法不同、实现的手段不同(算法和系统),且人工智能在短期内的核心经济影响是自动化以前无法完成的任务。
而目前的工业人工智能则是两者结合。工业人工智能可以增强劳动力素质、提高工作效率更好地服务客户,能使工业的各个环节产生变革,为先进制造带来新的希望。通过工业人工智能与数字设计相结合,将制造过程所需的信息无缝地结合到原材料到产品的转换过程当中,从而形成一个高度互联的工业实体。通过一整套供应链系统横跨多个公司,智能制造能通过对缺陷和故障的检测和纠正以确保产品质量的一致性和可追溯。这些进步取决于强大的工业互联网创新和面向制造流程的机器学习算法,以及可在以信息为中心的一体化系统中即插即用的机床和控制系统。
而工业人工智能的难点在于:
1.多源异构数据的机器学习
人工智能深度学习是基于完全标注的大样本静态特性学习,而工业人工智能则需要对不完全、无标注样本的动态特性进行学习。
2.产品质量、能耗以及运行状态的预测与追溯
原料转化为产品的过程是物质流、能源流、信息流交互作用的过程。反应机理不清的物理化学过程,其动态特性随运行过程变化。且不同生产批次之间的动态特性不同,单顿能耗难以在线测量。
3.决策与控制过程集成优化
制造过程中的智能决策接收到的是小数据,解决的是大任务。从信息感知层面,制造过程中的智能决策面临着开放环境、信息不完全、规则不确定等难题。制造过程当中难以建立决策仿真模型,同时最终决策需要权衡质量、效率、消耗等多冲突目标。
柴天佑指出,中国拥有一批国家级重点实验室和工业自动化、信息化的学术带头人、研究骨干以及人才资源。目前已取得相应的创新成果,由此孕育了一批先进的高技术公司。“世界工厂”级别的制造业则为工业人工智能的研究提供了实验环境。随着国家战略和工业需求的推动,我国的工业互联网一定会良好发展。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )