5月下旬,在英特尔首届AI开发者大会(Intel AI DevCon 2018)上,其全球副总裁兼人工智能产品事业部总经理Naveen Rao表示,英特尔正在开发第一个商用神经网络处理器产品英特尔Nervana NNP-L1000(Spring Crest),计划在2019年发布。据他表示,该芯片相较于去年10月推出的代号为“Lake Crest”专用人工智能芯片NNP优化实现3-4倍的训练性能。
本月初,英伟达正式发布了全新AI芯片“Jetson Xavier”,在CEO黄仁勋看来:“这台小电脑,将成为未来机器人的大脑”,将该芯片的使用范围清晰定义在机器人领域。
AMD近日公开了全球首款7纳米制程,名为“Radeon Vega”的GPU芯片原型。
IBM在近日提出了全新的芯片设计,可以通过在数据存储的位置执行计算来加速全连接神经网络的训练。
英特尔:深度学习训练性能提升100倍
对于英特尔来说,想要在巨头扎堆的AI芯片战场上站稳脚跟并不容易。PC时代,英特尔以90%的市场份额几乎完全垄断了CPU市场,但随着GPU和各类可替代处理器的不断推陈出新,CPU的市场开始萎缩。
正是发现了这一趋势,英特尔也开始依托产业平台转型,争取搭上人工智能的未来浪潮。收购“Nervana”便是浓墨重彩的一笔。
2014年4月,Nervana以打造“深度学习专用硬件”为主营业务正式成立,从成立之初到三轮共2050万美元融资,到被英特尔收购。三年半时间,终于去年10月公布了Nervana NNP系列初代芯片“Lake Crest”,于去年年底开始出货。
据了解,这款神经网络处理器的设计目的是为了快速解决AI应用遇到的数学问题,特别是神经网络,是目前比较流行的机器学习技术分支。
前Nervana CEO、英特尔全球副总裁兼人工智能产品事业部(AIPG)总经理 Naveen Rao
在此基础上,本次AI开发者大会上Naveen Rao公开了英特尔新一代AI芯——英特尔Nervana NNP-L1000,代号为“Spring Crest”的专用人工智能芯片,与“Lake Crest”只供应给一小部分英特尔合作伙伴不同,“Spring Crest”成为英特尔第一款商用神经网络处理器,并计划在2019年发布。
英特尔的目标是,到2020年将深度学习训练的性能提升100倍,具体实现路径是通过Crest的家族,与前代相比,新一代芯片将实现3-4倍的训练性能。
英伟达:Titan+DRIVE+Jetson
去年12月,英伟达推出了重磅产品“Titan V”PC GPU,该款GPU拥有110万亿次浮点运算性能,是其去年4月份公布的架构Titan Xp的9倍,和用于数据中心的英伟达Tesla V100 GPU一样,Titan V也更加清晰地面向AI。
据黄教主介绍说,“Volta”系列的“创生”主要为推动高性能计算和人工智能的极限:“我们用新的处理器架构、指令、数字格式,以及存储器架构等打开新的局面。”
在自动驾驶领域,英伟达的“DRIVE”系列也是各个性能爆表。去年10月,发布了“DRIVE PX Pegasus”自动驾驶平台,载了两颗Xavier芯片,以及Volta架构GPU,高配置让其拥有了高达320 TOPS的深度学习处理能力,这个数值是上一代DRIVE PX平台的数倍。而仅仅在两个月后的“CES 2018”上,黄教主在主题演讲中展示了NVIDIA最新的自动驾驶技术“DRIVE XAVIER”,在各种“核弹”级参数下,这款芯片在2018年Q1开始流片。
12下一页>(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )