中国对进口的依赖,令人心惊!
继美国商务部禁止美国企业向中兴通讯销售元器件后,近日又传出“中兴将无法使用Andriod操作系统”和“Cadence的EDA也将停止对中兴的服务”的传闻。短短6天时间,中兴事件就从芯片延伸至了软件层面。
软硬件皆无绝对优势,中国或将无以为继
中国科技力量不如国外,这是共识。
在硬件层面,美国芯片、日本镜头、韩国屏幕、德国阻电机、韩国的光刻机等充斥各行各业,国内几无拿的出手的原创产品。
而除硬件外,中国在软件层面上的劣势也正在被快速披露出来。以Andriod操作系统为例,除苹果的IOS外,几乎所有的智能手机,应用的都是Andriod,就连小米引以为傲的MIUI,也是基于Andriod开发而来的。除此之外,绝大多数的APP,也都是基于Andriod开发的。
如果谷歌突然表示将不再无偿提供Andriod操作系统,转为收费或禁用,那国内的手机厂商将面临或成本提升、或无系统可用的困局。
在中兴事件中,华为可以说是第二大被关注的对象了,因为它有自己的芯片,在硬件层面,华为站起来了!
然而,追究到软件层面,华为芯片是基于Cadence的EDA开发的。这就尴尬了,如果Cadence“突发精神病”,华为的芯片可能就造不出来了。
可以说,在软硬件上,我国均没有核心优势。这也引发了不少人的恐慌,一旦国外在软件层面让中国“断源”,诸如TensorFlow、MySQL、OpenStack、Hadoop、Spark等基础架构也对中国用户闭源,我们将何以为继?
大国博弈,软件也会变成攻击武器
从当前来看,我们的手机操作系统、开发App用到的各种编程语言、上网浏览的网页以及IDE(开发工具)、办公软件等,即便不完全依赖于国外,也都是由国外的基础架构支撑起来的。
以TensorFlow为例,这款谷歌的AI学习系统,是通过将复杂的数据结构传输至人工智能神经网中,对数据进行分析和处理的,所以可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行,被应用到人工智能训练的大部分场景,例如语音识别、自然语言理解、计算机视觉等领域,一经推出就被各国科技公司采用。
到2018年,TensorFlow的下载量已经超过了1000万次,遍布全球180国家和地区。仅就中国而言,不仅绝大多数AI初创企业在使用TensorFlow,就连阿里巴巴、腾讯、京东、小米、中兴等公司也均在使用此架构。尤其在关键产品上,大多数公司都会选择根据国外开源项目进行二次开发。
比如在众人眼中非常厉害的阿里巴巴云服务,也是在其他国家的基础架构上搭建而成的。比如阿里云数据库研发的AliSQL,就是基于MySOL改进而来的,目前应用于大众熟知的电商秒杀以及金融数据安全等场景。
但这其中存在很大的安全问题。通常,基于开源软件二次开发的产品,是必须要继续开源的。但大多数情况下,企业会基于自身利益,选择不对二次开发的基础架构开源,因为一旦开源,其可能会失去巨大的优势。且一旦开源不同的修改版本流于市面,用户将面临很多安全问题。
如著名的“棱镜门计划”,美国国家安全局(NSA)就是通过直接进入美国网际网路公司的中心服务器的方式,直接挖掘数据、收集情报,微软、雅虎、谷歌、苹果等在内的9家国际网络巨头皆参与其中。
因此,对于重要信息或单位来说,拥有完全独立自主的软件极为必要,如我国禁止重要的机关单位使用Windows系统,而使用的是红旗Linux。
退一步说,即便软件安全有所保障,但大多数开源框架的底层技术依旧抓在别人手里。大国博弈间,一旦政策改变,用户极有可能被打上“侵权”的标签,甚至被釜底抽薪。
其实,国内科技企业对此并非毫无认知,排除在能力和资金等方面不具优势的创业公司,对于已有一定体量的科技巨头来说,能否不被人扼住喉咙的关键,其实不在资金和人才,而在是否有前瞻意识并能付诸于行动。
奋起直追,中国必须有自研开源框架
“开源是国际的。代码本身是跨国界的,分享和协作也是跨国界的,这是一个扁平的世界。虽然二次开发最终还是会被授予‘国人出品’的光环,但是无论是开源小码农还是大神,在这个世界中,都是最好的践行者。”某互联网企业产品经理曾说道。也因此,大多数开发者在开发时并不会考虑基础架构依赖方面的问题。
但在中兴事件已上升至大国博弈的大背景下,我们必须认识到,这些“无国界”的科技成果,随时可成为别人攻击我们的武器。
可以看到,在中兴事件的负面影响井喷式爆发后,中国软硬件短板接连被揭。
随之而来的,是国人对核心科技技术的期盼,而国内科技巨头的“隐藏项目”也就在此时相继“被曝光”。其中,阿里巴巴收购中天微、腾讯的优图实验室公布深度学习框架ncnn等,均是举措之一。
但可以看见,这些都还仅停留于表面,依旧绕不过二次开发这道坎。相较于这两者,以技术起家的百度,就显得非常有前瞻性了。
和谷歌一样,百度在AI上的投入可以说是不遗余力的。2012年,在ImageNet大赛上卷积神经网络在计算机视觉上取得极大的成功后,百度就认识到了深度学习和对抗性神经网络的发展前景。
其后第二年,百度开始自主研发深度学习平台并将在内部开始应用,并于2016年9月首次对外开放,更名为PaddlePaddle。这是国内唯一一个开源的深度学习平台。
虽然较谷歌的TensorFlow,PaddlePaddle在生态和市场上不具先发优势,但百度的前瞻意识,让它成为了国内开源深度学习架构第一人,也是迄今为止的唯一一个。
百度COO陆奇甚至曾表示:“我们要将PaddlePaddle发展成具有中国特色,最适合中国国情的深度学习平台。”
此外,相较于TensorFlow,PaddlePaddle能让开发者聚焦于构建深度模型的高层部分,易用性较高。
其实,对于几乎已将全部身家押宝AI的百度来说,其想要在人工智能领域与谷歌展开竞争,就必定不能使用TensorFlow,而必须拥有自己的深度学习开源平台。虽然从目前来看,PaddlePaddle还不成熟,但基于百度的前瞻意识和行动能力,随着时间的推进,这一国内深度学习开源架构独苗,还是可以期待和支持一下的。
总结
可以看到,我国确实在某些方面落后于国外。中兴事件,让国人开始反思,这是一件好事。
但我们并不能只限于硬件层面,在软硬件皆薄弱的当下,我们需要在加强核心技术优势的同时,提升前瞻能力,并及时付诸行动以应对任何突发的事件。但我们需要时间。
就像PaddlePaddle虽暂时没有TensorFlow认可度高,但其胜在了是国内第一个深度学习开源架构。未来,当国内用户开始意识到“国产”的优势时,其生态也会随之而建设起来。
科技巨头不缺资金,BAT的行动也证明了这一点,只是起步较晚。行业发展需要时间,我们应该认可其进步,才能以长补短,有所进益。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )