AI助金属玻璃问世 人工智能加快新材料发现速度

在适当的条件下,一种被称为金属玻璃的未来合金,会比现在的钢材更坚固轻便,也更耐腐蚀和磨损。过去50年中,人们在数百万种可能的成分组合中,已经评估过几千种,但只有少数几种可能是有用的。

现在,由美国能源部SLAC国家加速器实验室、国家标准与技术研究院(NIST)和西北大学的科学家领导的一个科学小组报告,他们找到了发现和改进金属玻璃的捷径,仅用较少时间和成本,就能发现新材料。

发现新材料速度快200倍

理想的状况是,将两种或三种金属融合在一起,会得到看起来像金属的合金,其原子排列成刚性几何图形。

科学小组利用斯坦福同步辐射光源中一个结合了机器学习的新系统,能快速筛选数百种样品材料,使团队发现了3种新混合物制成的金属玻璃成分,速度比以前快200倍。

西北大学教授克里斯·沃尔夫顿是使用计算机和人工智能预测新材料的先驱,也是论文合作者之一。他说,通常需要十年或二十年的时间,新材料才能完成从发现到商用的过程,“这一成果极大缩短了新材料发现所花费的时间。”

材料科学的前景将改变

在过去的半个世纪里,科学家一共才研究了大约6000种金属玻璃的组成成分,而这套新系统能够制作并筛选20000种成分。

虽然有其他团队也在使用机器学习预测寻找不同种类的金属玻璃,但此次科学家通过实验的快速验证和预测,然后将结果循环到下一轮机器学习和实验中,是此次进步的独特之处。

实际上,这种方法可以用于各种实验,特别是在寻找材料,如金属玻璃和催化剂方面大有裨益。NIST材料研究工程师杰森·海垂科-席目尔说,人工智能将改变材料科学的前景。

为全球科学家提供实用工具

该论文是美国能源部资助此项目的第一个科学成果,SLAC正在与硅谷人工智能公司Citrine Informatics合作,改变了新材料的发现方式,为全世界科学家提供了实用的工具。

该公司由斯坦福大学和西北大学的前研究生创立,他们创建了一个材料科学数据平台,其中电子表格和实验室笔记中的数据以一致的格式存储,所以能用来供人工智能系统学习使用。

近来,评估新材料的速度非常缓慢,即使每天都可以检测5种潜在类型的金属玻璃,仍要花上一千年时间来研究每一种可能的金属玻璃组合,以克服有毒、昂贵成分,或去掉易碎的性质等。

沃尔夫顿说,最终的目标,是让科学家能够获得机器学习模型中的直接反馈结果,并在第二天甚至下一个小时内,就准备好另一套待测试的样本。

科技日报 房琳琳

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2018-04-23
AI助金属玻璃问世 人工智能加快新材料发现速度
在适当的条件下,一种被称为金属玻璃的未来合金,会比现在的钢材更坚固轻便,也更耐腐蚀和磨损。过去50年中,人们在数百万种可能的成分组合中,已经评估过几千种,但只有少数几种可能是有用的。

长按扫码 阅读全文